Advertisement

Plasmonics

, Volume 9, Issue 5, pp 1229–1237 | Cite as

Position Dependent Plasmonic Interaction Between a Single Nanoparticle and a Nanohole Array

  • Laurel L. Kegel
  • Seong-Soo Kim
  • Boris Mizaikoff
  • Christine Kranz
  • Karl S. BookshEmail author
Article

Abstract

The interaction of surface plasmons supported on a nanohole array and a single nanoparticle affixed to an atomic force microscopy (AFM) probe was studied for optimizing gap mode enhancement of the plasmonic field. Scanning probe microscopy controlled the AFM probe position, and the location specific interaction of the single nanoparticle (SNP) probe-nanohole array surface plasmons, was measured by darkfield spectroscopy. Raster-scanned darkfield imaging of the surface plasmons on the nanohole array is demonstrated, as well as image formation from measuring the SNP interaction at various (X, Y) locations relative to the nanohole. Coupling of the nanoparticle to the nanohole array exhibited maximal coupling when the SNP resided within a nanohole, resulting in a maximum SPR wavelength shift of 17 nm and an increase in scatter intensity of 137×. This technique may be expanded to mapping nanostructure coupling across three dimensions to determine optimal coupling conditions for applications in biosensing and surface enhanced spectroscopy. This contribution presents the first empirical observations of scanning probe microscopy (SPM) controlled gap mode enhancement of more complex nanostructures, a method for positioning optimization prior to sensing applications and experimental evidence for optimal lateral SNP-nanohole array positioning.

Keywords

Surface plasmon resonance Localized surface plasmon Plasmon coupling Gap mode Field enhancement Scanning probe microscopy 

Notes

Acknowledgments

The National Science Foundation (CHE 1111618) supported the work. The authors thank the W.M. Keck Electron Microscopy Facility for use of their atomic force microscopes.

References

  1. 1.
    Cao C, Sim SJ (2009) Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen-antibody interaction. Lab Chip 9(13):1836–1839. doi: 10.1039/b901327j CrossRefGoogle Scholar
  2. 2.
    Curry A, Nusz G, Chilkoti A, Wax A (2005) Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt Express 13(7):2668–2677CrossRefGoogle Scholar
  3. 3.
    Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeCrossRefGoogle Scholar
  4. 4.
    Egorov D, Dennis BS, Blumberg G, Haftel MI (2004) Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys Rev B 70(3):4. doi: 10.1103/PhysRevB.70.033404 CrossRefGoogle Scholar
  5. 5.
    Chowdhury MH, Lindquist NC, Lesuffleur A, Oh S-H, Lakowicz JR, Ray K (2012) Effect of nanohole spacing on the self-imaging phenomenon created by the three-dimensional propagation of light through periodic nanohole arrays. J Phys Chem C 116(37):19958–19967. doi: 10.1021/jp306179d CrossRefGoogle Scholar
  6. 6.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science and Business Media, LLC, New YorkGoogle Scholar
  7. 7.
    Hermann C, Kosobukin VA, Lampel G, Peretti J, Safarov VI, Bertrand P (2001) Surface-enhanced magneto-optics in metallic multilayer films. Phys Rev B 64(23):11. doi: 10.1103/PhysRevB.64.235422 CrossRefGoogle Scholar
  8. 8.
    Mansuripur M, Zakharian AR, Lesuffleur A, Oh SH, Jones RJ, Lindquist NC, Im H, Kobyakov A, Moloney JV (2009) Plasmonic nano-structures for optical data storage. Opt Express 17(16):14001–14014CrossRefGoogle Scholar
  9. 9.
    Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459(7245):410–413. doi: 10.1038/nature08053 CrossRefGoogle Scholar
  10. 10.
    Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37(5):921–930. doi: 10.1039/b705967c CrossRefGoogle Scholar
  11. 11.
    Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804. doi: 10.1063/1.1344225 CrossRefGoogle Scholar
  12. 12.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453. doi: 10.1038/nmat2162 CrossRefGoogle Scholar
  13. 13.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi: 10.1021/cr068126n CrossRefGoogle Scholar
  14. 14.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4–6):153–164. doi: 10.1016/j.cplett.2010.01.062 CrossRefGoogle Scholar
  15. 15.
    Hayashi S (2001) Spectroscopy of gap modes in metal particle-surface systems. In: Near-field optics and surface plasmon polaritons, vol 81. Topics in applied physics. Springer-Verlag Berlin, Berlin, pp 71–95Google Scholar
  16. 16.
    Hu M, Ghoshal A, Marquez M, Kik PG (2010) Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances. J Phys Chem C 114(16):7509–7514. doi: 10.1021/jp911416a CrossRefGoogle Scholar
  17. 17.
    Du L, Zhang X, Mei T, Yuan X (2010) Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS. Opt Express 18(3):1959–1965CrossRefGoogle Scholar
  18. 18.
    Muskens OL, Giannini V, Sanchez-Gil JA, Rivas JG (2007) Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. Opt Express 15(26):17736–17746. doi: 10.1364/oe.15.017736 CrossRefGoogle Scholar
  19. 19.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  20. 20.
    Live LS, Murray-Methot MP, Masson JF (2009) Localized and propagating surface plasmons in gold particles of near-micron size. J Phys Chem C 113(1):40–44. doi: 10.1021/jp8104419 CrossRefGoogle Scholar
  21. 21.
    Chang SH, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13(8):3150–3165CrossRefGoogle Scholar
  22. 22.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4(6):1003–1007. doi: 10.1021/nl0497171 CrossRefGoogle Scholar
  23. 23.
    Alaverdyan Y, Hempe EM, Vamivakas AN, E H, Maier SA, Atature M (2009) Spectral and angular distribution of Rayleigh scattering from plasmon-coupled nanohole chains. Appl Phys Lette 94 (2). doi: 10.1063/1.3070520
  24. 24.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271CrossRefGoogle Scholar
  25. 25.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311. doi: 10.1021/ac900221y CrossRefGoogle Scholar
  26. 26.
    Ji J, O’Connell JG, Carter DJD, Larson DN (2008) High-throughput nanohole array based system to monitor multiple binding events in real time. Anal Chem 80(7):2491–2498. doi: 10.1021/ac7023206 CrossRefGoogle Scholar
  27. 27.
    Sharpe JC, Mitchell JS, Lin L, Sedoglavich H, Blaikie RJ (2008) Gold nanohole array substrates as immunobiosensors. Anal Chem 80(6):2244–2249. doi: 10.1021/ac702555r CrossRefGoogle Scholar
  28. 28.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018. doi: 10.1021/nl048818w CrossRefGoogle Scholar
  29. 29.
    Correia-Ledo D, Gibson KF, Dhawan A, Couture M, Vo-Dinh T, Graham D, Masson JF (2012) Assessing the location of surface plasmons over nanotriangle and nanohole arrays of different size and periodicity. J Phys Chem C 116(12):6884–6892. doi: 10.1021/jp3009018 CrossRefGoogle Scholar
  30. 30.
    Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29. doi: 10.1016/s1748-0132(07)70016-6 CrossRefGoogle Scholar
  31. 31.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088. doi: 10.1021/nl071008a CrossRefGoogle Scholar
  32. 32.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366. doi: 10.1063/1.1629280 CrossRefGoogle Scholar
  33. 33.
    Wei H, Hakanson U, Yang ZL, Hook F, Xu HX (2008) Individual nanometer hole-particle pairs for surface-enhanced Raman scattering. Small 4(9):1296–1300. doi: 10.1002/smll.200701135 CrossRefGoogle Scholar
  34. 34.
    Live LS, Masson JF (2009) High sensitivity of plasmonic microstructures near the transition from short-range to propagating surface plasmon. J Phys Chem C 113(23):10052–10060. doi: 10.1021/jp9020273 CrossRefGoogle Scholar
  35. 35.
    He MD, Gong ZQ, Li S, Luo YF, Liu JQ, Chen XS, Lu W (2010) Coupling of localized surface plasmon modes in compound structure with metallic nanoparticle and nanohole arrays. J Appl Phys 108(9):6. doi: 10.1063/1.3506402 CrossRefGoogle Scholar
  36. 36.
    Fischer UC, Pohl DW (1989) Observation of single-particle plasmons by near-field optical microscopy. Phys Rev Lett 62(4):458–461CrossRefGoogle Scholar
  37. 37.
    Olk P, Renger J, Wenzel MT, Eng LM (2008) Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Lett 8(4):1174–1178. doi: 10.1021/nl080044m CrossRefGoogle Scholar
  38. 38.
    Garcia-Etxarri A, Romero I, de Abajo FJG, Hillenbrand R, Aizpurua J (2009) Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes. Phys Rev B 79(12). doi: 10.1103/PhysRevB.79.125439
  39. 39.
    Hakanson U, Agio M, Kuhn S, Rogobete L, Kalkbrenner T, Sandoghdar V (2008) Coupling of plasmonic nanoparticles to their environments in the context of van der Waals-Casimir interactions. Phys Rev B 77 (15). doi: 10.1103/PhysRevB.77.155408
  40. 40.
    Docter MW, Young IT, Piciu OM, Bossche A, Alkemade PFA, van den Berg PM, Garini Y (2006) Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging. Opt Express 14(20):9477–9482CrossRefGoogle Scholar
  41. 41.
    Branagan SP, Bohn PW (2009) Wavevector-resolved monochromatic spectral imaging of extraordinary optical transmission through subwavelength aperture arrays. Opt Express 17(21):18995–19005CrossRefGoogle Scholar
  42. 42.
    Ctistis G, Patoka P, Wang X, Kempa K, Giersig M (2007) Optical transmission through hexagonal arrays of subwavelength holes in thin metal films. Nano Lett 7(9):2926–2930. doi: 10.1021/nl0712973 CrossRefGoogle Scholar
  43. 43.
    Gao HW, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6(9):2104–2108. doi: 10.1021/nl061670r CrossRefGoogle Scholar
  44. 44.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297(5582):820–822. doi: 10.1126/science.1071895 CrossRefGoogle Scholar
  45. 45.
    Deckman HW, Dunsmuir JH (1982) Natural lithography. Appl Phys Lett 41(4):377–379. doi: 10.1063/1.93501 CrossRefGoogle Scholar
  46. 46.
    Haginoya C, Ishibashi M, Koike K (1997) Nanostructure array fabrication with a size-controllable natural lithography. Appl Phys Lett 71(20):2934–2936. doi: 10.1063/1.120220 CrossRefGoogle Scholar
  47. 47.
    Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573. doi: 10.1364/ao.35.001566 CrossRefGoogle Scholar
  48. 48.
    Murray-Methot MP, Menegazzo N, Masson JF (2008) Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography. Analyst 133(12):1714–1721. doi: 10.1039/b808820a CrossRefGoogle Scholar
  49. 49.
    Couture M, Live LS, Dhawan A, Masson JF (2012) EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays. Analyst 137(18):4162–4170. doi: 10.1039/c2an35566c CrossRefGoogle Scholar
  50. 50.
    Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253. doi: 10.1021/jp063879z CrossRefGoogle Scholar
  51. 51.
    Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J Phys Chem B 110(32):15755–15762. doi: 10.1021/jp062004h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laurel L. Kegel
    • 1
  • Seong-Soo Kim
    • 2
  • Boris Mizaikoff
    • 2
  • Christine Kranz
    • 2
  • Karl S. Booksh
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of DelawareNewarkUSA
  2. 2.Institute of Analytical and Bioanalytical ChemistryUniversity of UlmUlmGermany

Personalised recommendations