, Volume 9, Issue 5, pp 993–999 | Cite as

Effect of Interparticle Field Enhancement in Self-Assembled Silver Aggregates on Surface-Enhanced Raman Scattering

  • Viktoryia I. Shautsova
  • Viktor A. Zhuravkov
  • Olga V. Korolik
  • Andrei G. Novikau
  • Gvidona P. Shevchenko
  • Peter I. Gaiduk


The presence of so-called hot spots, regions with strongly enhanced electromagnetic field, is a critical property of a substrate enabling detection of surface-enhanced Raman scattering (SERS) signals at high enhancement levels. In this work, the effect of interparticle field enhancement on SERS signals was investigated comparing SERS spectra of ethylenediaminetetraacetic-disodium salt in the chemically produced colloids with isolated and aggregated silver nanoparticles using 473 and 532-nm wavelength excitation. The presence of aggregates in the colloidal solution resulted in SERS spectra that were insensitive to wavelength excitation and much richer in structural information and of higher resolution than the corresponding SERS spectra for the colloid with isolated nanoparticles. The experimental SERS spectra were found to be consistent with the finite-difference time-domain simulation results that explored the electromagnetic response of the isolated and aggregated nanoparticles. These results provide more evidence to suggest that the aggregate formation offers favorable electromagnetic properties increasing sensitivity of Raman spectroscopy.


Interparticle field enhancement Silver nanocolloids Raman spectroscopy Optical spectroscopy Transmission electron microscopy Electrodynamic simulation 



This work was supported by the Belarusian Scientific Research Program “Electronics and Photonics” (project 1.1.02). One author (PG) acknowledged the support of a Marie Curie Foundation within the 7th FP (project no. 298932, call reference: FP7-PEOPLE-2011-IIF).


  1. 1.
    Kneipp K, Kneipp H, Kneipp J (2006) Surface–enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single–molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39(7):443–450CrossRefGoogle Scholar
  2. 2.
    Lal S, Link S, Halas N (2007) Nano–optics from sensing to waveguiding. J Nat Photon 1:641–648CrossRefGoogle Scholar
  3. 3.
    Brolo AG (2012) Plasmonics for future biosensors. J Nat Photon 6:709–713CrossRefGoogle Scholar
  4. 4.
    Kawata S, Inouye Y, Verma P (2009) Plasmonics for near–field nano–imaging and superlensing. J Nat Photon 3:388–394CrossRefGoogle Scholar
  5. 5.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRefGoogle Scholar
  6. 6.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  7. 7.
    Kerker M, Wang D, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl Opt 19(24):4159–4174CrossRefGoogle Scholar
  8. 8.
    Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4162CrossRefGoogle Scholar
  9. 9.
    Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRefGoogle Scholar
  10. 10.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84(1):1–20CrossRefGoogle Scholar
  11. 11.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217CrossRefGoogle Scholar
  12. 12.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface–enhanced Raman scattering. J Phys: Condens Mater 4:1143–1212Google Scholar
  13. 13.
    Moskovits M (1985) Surface–enhanced spectroscopy. Rev Mod Phys 57(3):783–826CrossRefGoogle Scholar
  14. 14.
    Schatz G (1984) Theoretical studies of surface enhanced Raman scattering. Acc Chem Res 17(10):370–376CrossRefGoogle Scholar
  15. 15.
    Campion A, Kambhampati P (1998) Surface–enhanced Raman scattering. Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  16. 16.
    Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure–activity relationships in gold nanoparticle dimers and trimers for surface–enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910CrossRefGoogle Scholar
  17. 17.
    Yang Y, Shi JL, Tanaka T, Nogami M (2007) Self–assembled silver nanochains for surface–enhanced Raman scattering. Langmuir 23(24):12042–12047CrossRefGoogle Scholar
  18. 18.
    Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9(1):485–490CrossRefGoogle Scholar
  19. 19.
    Xu HX, Aizpurua J, Käll M (2000) Electromagnetic contributions to single–molecule sensitivity in surface–enhanced Raman scattering. Phys Rev E 62(3):4318–4324CrossRefGoogle Scholar
  20. 20.
    Le Ru EC, Etchegoin PG, Meyer M (2006) Enhancement factor distribution around a single surface–enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125(20):204701–204714CrossRefGoogle Scholar
  21. 21.
    Nie S, Emery SR (1997) Probing single molecules and single nanoparticles by surface–enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  22. 22.
    Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS Population pumping of excited vibrational states by spontaneous surface–enhanced Raman scattering. Phys ReV Lett 76(14):2444–2447Google Scholar
  23. 23.
    Constantino CJL, Lemma T, Antunes PA, Aroca R (2001) Single-molecule detection using surface–enhanced resonance Raman scattering and langmuir–blodgett monolayers. Anal Chem 73(15):3674–3678CrossRefGoogle Scholar
  24. 24.
    Lumerical Solutions, Inc. 9 Optical and photonic design and engineering software productsGoogle Scholar
  25. 25.
    Palik ED (ed) (1991) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  26. 26.
    Krishnan K, Plane RA (1968) Raman spectra of ethylenediaminetetraacetic acid and its metal complexes. J Am Chem Soc 90(12):3195–3200CrossRefGoogle Scholar
  27. 27.
    Guzonas DA, Atkinson GF, Irish DE, Adams WA (1983) SERS and normal Raman spectroscopic studies of the silver electrode/KCl + EDTA solution interface. J Electroanal Chem 150(1–2):457–468CrossRefGoogle Scholar
  28. 28.
    Wetzel H, Pettinger B, Wenning U (1980) Surface–enhanced Raman scattering from ethylenediaminetetraacetic–disodium salt and nitrate ions on silver electrodes. Chem Phys Lett 75(1):173–178CrossRefGoogle Scholar
  29. 29.
    Kneipp K (2007) Surface–enhanced Raman scattering. Phys Today 60(11):40–46CrossRefGoogle Scholar
  30. 30.
    Knoll A (1998) Interfaces and thin films as seen by bound electromagnetic waves. Ann Rev Phys Chem 49:569–638CrossRefGoogle Scholar
  31. 31.
    Otto A (2005) The ‘chemical’ (electronic) contribution to surface–enhanced Raman scattering. J Raman Spectrosc 36(6–7):497–509CrossRefGoogle Scholar
  32. 32.
    Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80(10):1826–1828CrossRefGoogle Scholar
  33. 33.
    Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090CrossRefGoogle Scholar
  34. 34.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface–enhanced Raman scattering. Science 321:388–392CrossRefGoogle Scholar
  36. 36.
    Chien FC, Huang WY, Shiu J, Kuo CW, Chen P (2009) Revealing the spatial distribution of the site enhancement for surface–enhanced Raman scattering on regular nanoparticle arrays. Opt Express 17(16):13974–13981CrossRefGoogle Scholar
  37. 37.
    Xu H, Käll M (2003) Polarization–dependent surface–enhanced Raman spectroscopy of isolated silver nanoaggregates. ChemPhysChem 4(9):1001–1005CrossRefGoogle Scholar
  38. 38.
    Emory SR, Haskins WE, Nie S (1998) Direct observation of size–dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120(31):8009–8010CrossRefGoogle Scholar
  39. 39.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Viktoryia I. Shautsova
    • 1
  • Viktor A. Zhuravkov
    • 1
  • Olga V. Korolik
    • 1
  • Andrei G. Novikau
    • 1
  • Gvidona P. Shevchenko
    • 1
  • Peter I. Gaiduk
    • 1
  1. 1.Belarusian State UniversityMinskRepublic of Belarus

Personalised recommendations