Skip to main content
Log in

Plasmonic Focusing in Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this review, we show that by designing the metallic nanostructures, the surface plasmon (SP) focusing has been achieved, with the focusing spot at a subwavelength scale. The central idea is based on the principle of optical interference that the constructive superposition of SPs with phase matching can result in a considerable electric-field enhancement of SPs in the near field, exhibiting a pronounced focusing spot. We first reviewed several new designs for surface plasmon focusing by controlling the metallic geometry or incident light polarization: We made an in-plane plasmonic Fresnel zone plates, a counterpart in optics, which produces an obvious SP focusing effect; We also fabricated the symmetry broken nanocorrals which can provide the spatial phase difference for SPs, and then we propose another plasmon focusing approach by using semicircular nanoslits, which gives rise to the phase difference through changing refractive index of the medium in the nanoslits. Further, we showed that the spiral metallic nanostructure can be severed as plasmonic lens to control the plasmon focusing under a linearly polarized light with different angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Verhagen E, Polman A, Kuipers L (2008) Nanofocusing in laterally tapered plasmonic waveguides. Opt Express 16:45–57

    Article  Google Scholar 

  4. Volkov VS, Bozhevolnyi SI, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Ebbesen TW (2009) Nanofocusing with channel plasmon polaritons. Nano Lett 9:1278–1282

    Article  CAS  Google Scholar 

  5. Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402

    Article  CAS  Google Scholar 

  6. Evlyukhin AB, Bozhevolnyi SI, Stepanov AL, Kiyan R, Reinhardt C, Passinger S, Chichkov BN (2007) Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt Express 15:16667–16680

    Article  CAS  Google Scholar 

  7. Kim H, Min SW, Lee B (2008) Geometrical optics analysis of the structural imperfection of retroreflection corner cubes with a nonlinear conjugate gradient method. Appl Optics 47:6453–6469

    Article  Google Scholar 

  8. Zia R, Brongersma ML (2007) Surface plasmon polariton analogue to Young's double-slit experiment. Nat Nanotechnol 2:426–429

    Article  CAS  Google Scholar 

  9. Kim H, Lee B (2008) Diffractive slit patterns for focusing surface plasmon polaritons. Opt Express 16:8969–8980

    Article  Google Scholar 

  10. Zhan QW (2006) Evanescent bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt Lett 31:1726–1728

    Google Scholar 

  11. Yang SY, Chen WB, Nelson RL, Zhan QW (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34:3047–3049

    Article  Google Scholar 

  12. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950–1954

    Article  CAS  Google Scholar 

  13. Fang ZY, Huang S, Lin F, Zhu X (2009) Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt Express 17:20327–20332

    Article  CAS  Google Scholar 

  14. Fang ZY, Lu YW, Fan LR, Lin CF, Zhu X (2010) Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure. Plasmonics 5:57–62

    Article  CAS  Google Scholar 

  15. Fang ZY, Qi H, Wang C, Zhu X (2010) Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing. Plasmonics 5:207–212

    Article  CAS  Google Scholar 

  16. Fang ZY, Zhang XJ, Liu D, Zhu X (2008) Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Appl Phys Lett 93:073306

    Article  Google Scholar 

  17. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  18. Sanders AW, Routenberg DA, Wiley BJ, Xia YN, Dufresne ER, Reed MA (2006) Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett 6:1822–1826

    Article  CAS  Google Scholar 

  19. Fan JA et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  20. Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a fano resonance. Nano Lett 11:4475–4479

    Article  CAS  Google Scholar 

  21. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  22. Fang ZY, Liu Z, Wang YM, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813

    Article  CAS  Google Scholar 

  23. Fang ZY, Wang YM, Liu Z, Schlather A, Ajayan PM, Koppens FHL, Nordlander P, Halas NJ (2012) Plasmon-induced doping of graphene. ACS Nano 6:10222–10228

    Article  CAS  Google Scholar 

  24. Fang ZY et al (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395

    Article  CAS  Google Scholar 

  25. Lee B, Kim S, Kim H, Lim Y (2010) The use of plasmonics in light beaming and focusing. Prog Quant Electron 34:47–87

    Article  CAS  Google Scholar 

  26. Zhang X, Liu ZW (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  27. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3:388–394

    Article  CAS  Google Scholar 

  28. Wei H, Hao F, Huang YZ, Wang WZ, Nordlander P, Xu HX (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8:2497–2502

    Article  CAS  Google Scholar 

  29. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  30. Fang ZY, Fan LR, Lin CF, Zhang D, Meixner AJ, Zhu X (2011) Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11:1676–1680

    Article  CAS  Google Scholar 

  31. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

  32. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95:267405

    Article  CAS  Google Scholar 

  33. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  34. Fang ZY, Lin CF, Ma RM, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using US nanoribbon. ACS Nano 4:75–82

    Article  CAS  Google Scholar 

  35. Chen WB, Abeysinghe DC, Nelson RL, Zhan QW (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:4320–4325

    Article  CAS  Google Scholar 

  36. Nordlander P (2009) The ring: a leitmotif in plasmonics. ACS Nano 3:488–492

    Article  CAS  Google Scholar 

  37. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9:2139–2143

    Article  CAS  Google Scholar 

  38. Song WT, Fang ZY, Huang S, Lin F, Zhu X (2010) Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens. Opt Express 18:14762–14767

    Article  CAS  Google Scholar 

  39. Fang ZY, Peng QA, Song WT, Hao FH, Wang J, Nordlander P, Zhu X (2011) Plasmonic focusing in symmetry broken nanocorrals. Nano Lett 11:893–897

    Article  CAS  Google Scholar 

  40. Lindquist NC, Nagpal P, Lesuffleur A, Norris DJ, Oh SH (2010) Three-dimensional plasmonic nanofocusing. Nano Lett 10:1369–1373

    Article  CAS  Google Scholar 

  41. Zhou J, Jin L, Zou WB (2012) Phase modulation of output light by planar metallic-dielectric array with electro-optical material. Opt Commun 285:46–49

    Article  CAS  Google Scholar 

  42. Min CJ, Wang P, Jiao XJ, Deng Y, Ming H (2007) Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt Express 15:9541–9546

    Article  CAS  Google Scholar 

  43. Cetin AE, Guven K, Mustecaplioglu OE (2010) Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources. Opt Lett 35:1980–1982

    Article  CAS  Google Scholar 

  44. Cai WS, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9:4403–4411

    Article  CAS  Google Scholar 

  45. Chen WB, Abeysinghe DC, Nelson RL, Zhan QW (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Article  CAS  Google Scholar 

  46. Chen WB, Nelson RL, Zhan QW (2012) Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt Lett 37:1442–1444

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Zheyu Fang, Peking University, for his valuable discussion. The work is supported by the National Science Foundation of China (Grant nos. 61176120, 61378059, 11374023) and National Basic Research Program of China (973 Program) Grant no. 2012CB933004. The National Undergraduate Innovational Experimentation Program and NFFTBS Grant no. J1030310, J1103205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yang, C., Li, J. et al. Plasmonic Focusing in Nanostructures. Plasmonics 9, 879–886 (2014). https://doi.org/10.1007/s11468-014-9692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9692-5

Keywords

Navigation