Skip to main content

Carbohydrate–Lectin Interaction on Graphene-Coated Surface Plasmon Resonance (SPR) Interfaces

Abstract

The paper describes the detection of carbohydrate–lectin interaction on graphene-on-metal surface plasmon resonance (SPR) interfaces. Graphene-coated gold-based SPR interfaces were formed through the transfer of large-area graphene grown by chemical vapor deposition (CVD) on polycrystalline Cu foils. The method allowed successful transfer of single- and double-layered graphene sheets onto the SPR interfaces in a reproducible manner. Functionalization of the graphene interface with mannose was achieved by simple immersion into a mannose aqueous solution (100 mM), resulting in noncovalent interactions between the aromatic ring structure of graphene and mannose. The utility of the carbohydrate-modified graphene-on-gold interface for the selective and sensitive detection of carbohydrate–lectin interactions was demonstrated using model lectins from Lens culinaris (LC) and Triticum vulgaris (TV). While LC lectin binds specifically to mannopyranoside units, TV lectin has an affinity for N-acetyl glucosamine and sialic acid residues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T (2008) Anal Chem 80:3476

    CAS  Article  Google Scholar 

  2. Szunerits S, Niedziolka-Jonsson J, Boukherroub R, Woisel P, Baumann J-S, Siriwardena A (2010) Anal Chem 82:8203–8210

    CAS  Article  Google Scholar 

  3. Norberg O, Deng L, Yan M, Ramstrom O (2009) Bioconjugate Chem 20:2364–2370

    Google Scholar 

  4. Maalouli N, Barras A, Siriwardena A, Bouazaoui M, Boukherroub R, Szunerits S (2013) Analyst 138:805

    CAS  Article  Google Scholar 

  5. Wang H-K, Zhang Y, Yuan X, Chen Y, Yan M (2011) Bioconjugate Chem 22:26

  6. Yonzon CR, Jeoung E, Zhou S, Schatz GC, Mrksich M, Van Duyne RP (2004) J Am Chem Soc 126:12669

    CAS  Article  Google Scholar 

  7. Mizukami K, Takakura H, Matsunaga T, Kitano H (2008) Colloids Surf B: Biointerfaces 66:110

    CAS  Article  Google Scholar 

  8. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) J Am Chem Soc 125:6140–6148

    CAS  Article  Google Scholar 

  9. Linman MJ, Taylor JD, Yu H, Chen X, Cheng Q (2008) Anal Chem 80:4007

    CAS  Article  Google Scholar 

  10. Housemann BT, Mrksich M (2002) Chem Biol 9:443

    Article  Google Scholar 

  11. Sun W-L, Stabler CL, Cazalis CS, Chaikof EL (2006) Bioconjugate Chem 17:52

  12. Norberg O, Deng L, Aastrup T, Yan M, Ramstrom O (2011) Anal Chem 83:1000

    CAS  Article  Google Scholar 

  13. Norberg O, Lee IH, Aastrup T, Yan M, Ramstrom O (2012) Biosens Bioelectron 34:51

    CAS  Article  Google Scholar 

  14. Choi SH, Kim YL, Byun KM (2010) Opt Express 19:458

    Article  Google Scholar 

  15. Wu L, Chu H-S, Koh WS, Li EP (2010) Opt Express 18:14395

    CAS  Article  Google Scholar 

  16. Huh S, Park J, Kim KS, Hong BH, Kim SB (2011) ACS Nano 5:3639

    CAS  Article  Google Scholar 

  17. Salihoglu O, Balci O, Kocabas C (2011) Appl Phys Lett 100:213110

    Article  Google Scholar 

  18. Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Anal Bioanal Chem 405:1435

    CAS  Article  Google Scholar 

  19. Sing VV, Gupta G, Batra A, Nigam AK, Boopathi M, Gutch PK, Tripathi BK, Srivastava A, Samuel M, Agarwal GS, Sing B, Vijayaraghavan R (2012) Adv Funct Mater 22:2352

    Article  Google Scholar 

  20. Mao Y, Bao Y, Wang W, Li Z, Li F, Niu L (2011) Talanta 85:2106

    CAS  Article  Google Scholar 

  21. Wang L, Zhu C, Han L, Jin L, Zhou M, Dong S (2011) Chem Commun 47:7794

    CAS  Article  Google Scholar 

  22. Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J, Pichonat E, Happy H, Boukherroub R, Szunerits S (2013) Biosens Bioelectron 50:239–243

    CAS  Article  Google Scholar 

  23. Kaminska I, Barras A, Coffinier Y, Lisowski W, Niedziolka-Jonsson J, Woisel P, Lyskawa J, Opallo M, Siriwardena A, Boukherroub R, Szunerits S (2012) ACS Appl Mater Interfaces 4:5386

    CAS  Article  Google Scholar 

  24. Wink T, Van Zuilen SJ, Bult A, Van Bennekom WP (1998) Anal Chem 70:827

    CAS  Article  Google Scholar 

  25. Kooyman RPH, Lenferink ATM, Eenik RG, Greve J (1991) Anal Chem 63:83

    CAS  Article  Google Scholar 

  26. Oznuluer T, Pince E, Polat EO O, Balci O, Salihoglu O, Kocabas C (2011) Appl Phys Lett 98:183101

    Article  Google Scholar 

  27. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324:1312–1314

    CAS  Article  Google Scholar 

  28. Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Woisel P, Opallo M, Szunerits S, Boukherroub R (2012) Chem Commun 48:1221

    CAS  Article  Google Scholar 

  29. Wang JL, Zhou HS (2008) Anal Chem 80:7174

    CAS  Article  Google Scholar 

  30. Park S-M, Lee MR, Shin I (2009) Bioconjug Chem 20:155

    CAS  Article  Google Scholar 

  31. Kussrow A, Kaltgrad E, Wolfenden ML, Cloninger MJ, Finn MG, Bornhop DJ (2009) Anal Chem 81:4889

    CAS  Article  Google Scholar 

Download references

Acknowledgments

R.B. and S.S. gratefully acknowledge the financial support from the Centre National de Recherche Scientifique (CNRS), the University Lille 1, Nord Pas de Calais region, and the European Regional Development Fund (INTERREG IVa FW1.1.9 “Plasmobio” project). S.S. thanks the Institut Universitaire de France (IUF) for the financial support. P.S. gratefully acknowledges the financial support from the European Commission through RTN project MATCON (contract no. 238201). This work was partly funded by a grant from the Croatian Ministry of Science, Education and Sports, project 098-0982934-2717. Financial support from the ANR P2N GRACY project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Szunerits.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Penezic, A., Deokar, G., Vignaud, D. et al. Carbohydrate–Lectin Interaction on Graphene-Coated Surface Plasmon Resonance (SPR) Interfaces. Plasmonics 9, 677–683 (2014). https://doi.org/10.1007/s11468-014-9686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9686-3

Keywords

  • Graphene
  • Surface plasmon resonance
  • Mannose
  • Lectins
  • Biosensors