, Volume 9, Issue 4, pp 765–772 | Cite as

Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing

  • Mana Toma
  • Kyunghee Cho
  • Jennifer B. Wood
  • Robert M. Corn


Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.


Gold nanorings Periodic nanoring arrays Localized surface plasmon resonance DNA biosensor Near infrared 



The authors thank the laboratory for electron and X-ray instrumentation (LEXI) for the use of the SEM and the plasma cleaner as well as Dr. J. Kim and Prof. R. M. Penner for the use of the furnace. This work was funded by NSF CHE-1057638.


  1. 1.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. doi: 10.1021/cr068107d CrossRefGoogle Scholar
  2. 2.
    Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713. doi: 10.1038/nphoton.2012.266 CrossRefGoogle Scholar
  3. 3.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857. doi: 10.1021/cr100313v CrossRefGoogle Scholar
  4. 4.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453. doi: 10.1038/nmat2162 CrossRefGoogle Scholar
  5. 5.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi: 10.1021/cr068126n CrossRefGoogle Scholar
  6. 6.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607 Google Scholar
  7. 7.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604. doi: 10.1021/ja020393x CrossRefGoogle Scholar
  8. 8.
    Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi: 10.1021/nl0515753 CrossRefGoogle Scholar
  9. 9.
    Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MA (2012) Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J Am Chem Soc 134(14):6434–6442. doi: 10.1021/ja300901e CrossRefGoogle Scholar
  10. 10.
    Kathryn MM, Feng H, Seunghyun L, Peter N, Jason HH (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21(25):255503. doi: 10.1088/0957-4484/21/25/255503 CrossRefGoogle Scholar
  11. 11.
    Lee S-W, Lee K-S, Ahn J, Lee J-J, Kim M-G, Shin Y-B (2011) Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithography. ACS Nano 5(2):897–904. doi: 10.1021/nn102041m CrossRefGoogle Scholar
  12. 12.
    Jiang H, Li T, Ertorer E, Yang J, Sabarinathan J, Mittler S (2013) A biosensor based on periodic arrays of gold nanodisks under normal transmission. Sens Actuators, A 189:474–480. doi: 10.1016/j.sna.2012.08.041
  13. 13.
    Marinakos SM, Chen SH, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79(14):5278–5283. doi: 10.1021/ac0706527 CrossRefGoogle Scholar
  14. 14.
    Piliarik M, Sipova H, Kvasnicka P, Galler N, Krenn JR, Homola J (2012) High-resolution biosensor based on localized surface plasmons. Opt Express 20(1):672–680. doi: 10.1364/OE.20.000672 CrossRefGoogle Scholar
  15. 15.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2(4):687–692. doi: 10.1021/nn7003734 CrossRefGoogle Scholar
  16. 16.
    Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263. doi: 10.1021/nl0701612 CrossRefGoogle Scholar
  17. 17.
    Chengjun H, Jian Y, Shuo W, Stakenborg T, Lagae L (2012) Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Appl Phys Lett 100(17):173114. doi: 10.1063/1.4707382 CrossRefGoogle Scholar
  18. 18.
    Tsai C-Y, Lu S-P, Lin J-W, Lee P-T (2011) High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl Phys Lett 98(15):1530108. doi: 10.1063/1.3579536 CrossRefGoogle Scholar
  19. 19.
    Kim S, Jung J-M, Choi D-G, Jung H-T, Yang S-M (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112. doi: 10.1021/la0605844 CrossRefGoogle Scholar
  20. 20.
    Ye J, Dorpe PV, Lagae L, Maes G, Borghs G (2009) Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures. Nanotechnology 20(46):465203. doi: 10.1088/0957-4484/20/46/465203 CrossRefGoogle Scholar
  21. 21.
    Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, de Abajo FJG (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):057401. doi: 10.1103/PhysRevLett.90.057401 CrossRefGoogle Scholar
  22. 22.
    Halpern AR, Corn RM (2013) Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. Acs Nano 7(2):1755–1762. doi: 10.1021/nn3058505 CrossRefGoogle Scholar
  23. 23.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi: 10.1039/df9511100055 CrossRefGoogle Scholar
  24. 24.
    Chen Y, Nguyen A, Niu L, Corn RM (2009) Fabrication of DNA microarrays with poly(l-glutamic acid) monolayers on gold substrates for SPR imaging measurements. Langmuir 25(9):5054–5060. doi: 10.1021/la804021t CrossRefGoogle Scholar
  25. 25.
    Kedenburg S, Vieweg M, Gissibl T, Giessen H (2012) Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mater Express 2(11):1588–1611. doi: 10.1364/ome.2.001588 CrossRefGoogle Scholar
  26. 26.
    Kubo W, Fujikawa S (2011) Au double nanopillars with nanogap for plasmonic sensor. Nano Lett 11(1):8–15. doi: 10.1021/nl100787b CrossRefGoogle Scholar
  27. 27.
    Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11(2):391–397. doi: 10.1021/nl102991v CrossRefGoogle Scholar
  28. 28.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. doi: 10.1126/science.1147241 CrossRefGoogle Scholar
  29. 29.
    Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3(12):4916–4928. doi: 10.1039/c1nr10969c CrossRefGoogle Scholar
  30. 30.
    Wood JB, Szyndler MW, Halpern AR, Cho K, Corn RM (2013) Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements. Langmuir 29(34):10868–10873. doi: 10.1021/la402425n CrossRefGoogle Scholar
  31. 31.
    Sendroiu IE, Gifford LK, Luptak A, Corn RM (2011) Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J Am Chem Soc 133(12):4271–4273. doi: 10.1021/ja2005576 CrossRefGoogle Scholar
  32. 32.
    Chen C-Y, Un I-W, Tai N-H, Yen T-J (2009) Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt Express 17(17):15372–15380. doi: 10.1364/oe.17.015372 CrossRefGoogle Scholar
  33. 33.
    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z-K, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun. doi: 10.1038/ncomms3381 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mana Toma
    • 1
  • Kyunghee Cho
    • 1
  • Jennifer B. Wood
    • 1
  • Robert M. Corn
    • 1
  1. 1.Department of ChemistryUniversity of California—IrvineIrvineUSA

Personalised recommendations