Skip to main content
Log in

Fabrication of Monodispersed Silver Nanoparticles and their Collective Sharp Plasmonic Response

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Monodispersed silver (Ag) nanoparticles (NPs) were obtained by applying an electric field on unipolar-charged Ag NPs fabricated using a heterogeneous condensation technique in gas media. Well defined and charged Ag NPs were separated based on their sizes and were collected on quartz substrates. Thin films consisting of monodispersed Ag NPs with size ranging from 35 to 120 nm were prepared by varying an applied electric field during the fabrication process. Scanning electron microscope results showed that the samples have uniform size distribution. Coherent oscillations of conduction band electrons in gas medium induced by electromagnetic field and coupling of all similar plasmon resonances due to uniform Ag NPs size produced unique and interesting optical properties. Narrow extinction widths (∼41 to ∼69 nm) were observed compared to the width of polydispersed Ag sample. The ability to prepare samples in gas media and tune the plasmon resonance by merely varying an electric field during fabrication makes the method simple, fast, and highly economical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  3. Evanoff DD Jr, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    CAS  Google Scholar 

  4. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  5. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  6. Birringer R (1989) Nanocrystalline materials. Mater Sci Eng A 117:33–43

    Article  Google Scholar 

  7. Gleiter H (1990) Structure and properties of nanometer-sized materials. Phase Transit 24:15–34

    Article  Google Scholar 

  8. Kruis F, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29:511–535

    Article  CAS  Google Scholar 

  9. Magnusson M, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold Nanoparticles: production, reshaping, and thermal charging. J Nanoparticle Res 1:243–251

    Article  CAS  Google Scholar 

  10. Suslov A (2002) Synthesis of magnetic cluster nanoparticles. Eur Cells Mater 3:200–202

    Google Scholar 

  11. Suslov A, Lama P, Dorsinville R (2011) Fabrication and characterisation of nanostructured thin films of Ag synthesised using condensation on ion centres in gas. Micro Nano Lett 6:955–957

    Article  CAS  Google Scholar 

  12. Zhang SH, Akutsu Y, Russell LM, Flagan RC, Seinfeld JH (1995) Radial differential mobility analyzer. Aerosol Sci Technol 23:357–372

    Article  CAS  Google Scholar 

  13. Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453

    Article  CAS  Google Scholar 

  14. Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE T Plasma Sci 19:1152–1166

    Article  CAS  Google Scholar 

  15. Brunelli NA, Flagan RC, Giapis KP (2009) Radial differential mobility analyzer for one nanometer particle classification. Aerosol Sci Technol 43:53–59

    Article  CAS  Google Scholar 

  16. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Cluster Sci 10:295–317

    Article  CAS  Google Scholar 

  17. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A Way to 2D and 3D Self-Organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  18. Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi JR (2007) Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J Phys Chem C 111:14962–14967

    Article  CAS  Google Scholar 

  19. Jiang LP, Wang AN, Zhao Y, Zhang JR, Zhu JJ (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509

    Article  CAS  Google Scholar 

  20. Yamamoto M, Nakamoto M (2003) Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine. J Mater Chem 13:2064–2065

    Article  CAS  Google Scholar 

  21. Bunge SD, Boyle TJ, Headley TJ (2003) Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 3:901–905

    Article  CAS  Google Scholar 

  22. Zhang L, Shen Y, Xie A, Li S, Jin B, Zhang Q (2006) One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J Phys Chem B 110:6615–6620

    Article  CAS  Google Scholar 

  23. Chen Z, Gao L (2007) A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles. Mater Res Bull 42:1657–1661

    Article  CAS  Google Scholar 

  24. Li JL, An XQ, Zhu YY (2012) Controllable synthesis and characterization of highly fluorescent silver nanoparticles. J Nanoparticle Res 14:1325–1333

    Article  Google Scholar 

  25. Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81

    Article  CAS  Google Scholar 

  26. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  27. Quinten M, Kreibig U (1993) Absorption and elastic scattering of light by particle aggregates. Appl Opt 32:6173–6182

    Article  CAS  Google Scholar 

  28. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano lett 5:5–9

    Article  CAS  Google Scholar 

  29. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-Palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  30. Bjerneld EJ, Svedberg F, Kall M (2003) Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced raman scattering. Nano Lett 3:593–596

    Article  CAS  Google Scholar 

  31. Hwang CB, Fu YS, Lu YL, Jang SW, Chou PT, Wang CRC, Yu SJ (2000) Synthesis, characterization, and highly efficient catalytic reactivity of suspended palladium nanoparticles. J Catal 195:336–341

    Article  CAS  Google Scholar 

  32. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced raman scattering (SERS). Phys Rev Let 78:1667–1670

    Article  CAS  Google Scholar 

  33. Gurudas U, Brooks E, Bubb DM, Heiroth S, Lippert T, Wokaun A (2008) Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses. J Appl Phys 104:073107

    Article  Google Scholar 

  34. Yoon WJ, Jung KY, Liu J, Duraisamy T, Revur R, Teixeira FL, Sengupta S, Berger PR (2010) Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 94:128–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Pemba Lama) acknowledges the financial support given by Corning Incorporated. The authors also acknowledge the science department of City College of New York for the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suslov, A., Lama, P. & Dorsinville, R. Fabrication of Monodispersed Silver Nanoparticles and their Collective Sharp Plasmonic Response. Plasmonics 9, 493–497 (2014). https://doi.org/10.1007/s11468-013-9647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9647-2

Keywords

Navigation