Skip to main content
Log in

Excitation of Multiple Fano-Like Resonances Induced by Higher Order Plasmon modes in Three-Layered Bimetallic Nanoshell Dimer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The presence of plasmonic Fano-like resonances in the optical response of isolated and dimer metal-dielectric-metal nanostructures are investigated theoretically. The nanostructures are engineered in such a way to support multiple Fano-like resonances that are induced by the interference of bright and dark plasmon modes. It is found that the dimer resonators exhibit different types of Fano resonances for both the transverse and longitudinal polarizations unlike conventional nanodimers. Several configurations of the dimer Fano resonator are analyzed with special emphasis on the Fano spectral line shape. Breaking the symmetry of the dimer nanostructure in various directions control the asymmetric line shape and provides different kinds of unique Fano resonances. In certain cases, the Fano resonators exhibit multiple Fano resonances that are particularly significant for plasmon line shaping and can serve as platforms for multi-wavelength sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LSPRs:

Localized surface plasmon resonances

SERS:

Surface-enhanced Raman spectroscopy

EIT:

Electromagnetic-induced transparency

MNS:

Multilayered nanoshell

PIT:

Plasmon-induced transparency

IMNS:

Isolated multilayered nanoshell

NC-IMNS:

Non-concentric isolated multilayered nanoshell

IMNS-NG:

Isolated multilayered nanoegg

References

  1. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  2. Ye J, Wen F, Sobhani H, Lassiter JB, Dorpe PV, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667

    Article  CAS  Google Scholar 

  3. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978

    Article  Google Scholar 

  4. López-Tejeira F, Rn P-D, Sánchez-Gil JA (2012) High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts. ACS Nano 6(10):8989–8996

    Article  Google Scholar 

  5. Yang Z-J, Zhang Z-S, Hao Z-H, Wang Q-Q (2011) Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter. Appl Phys Lett 99(8):081103–081107, 081107

    Article  Google Scholar 

  6. Chen H, Shao L, Ming T, Woo KC, Man YC, Wang J, Lin H-Q (2011) Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates. ACS Nano 5(8):6754–6763

    Article  CAS  Google Scholar 

  7. Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2):1023–1034

    Article  CAS  Google Scholar 

  8. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10(7):2694–2701

    Article  CAS  Google Scholar 

  9. Khan AD, Miano G (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8(3):1429–1437

    Article  CAS  Google Scholar 

  10. Zhang J, Zayats A (2013) Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt Express 21(7):8426–8436

    Article  Google Scholar 

  11. Peña-Rodríguez O, Rivera A, Campoy-Quiles M, Pal U (2013) Tunable Fano resonance in symmetric multilayered gold nanoshells. Nanoscale 5(1):209–216

    Article  Google Scholar 

  12. Shu J, Gao W, Xu Q (2013) Fano resonance in concentric ring apertures. Opt Express 21(9):11101–11106

    Article  Google Scholar 

  13. Lahiri B, McMeekin SG, De La Rue RM, Johnson NP (2013) Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs). Opt Express 21(8):9343–9352

    Article  CAS  Google Scholar 

  14. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6(6):5130–5137

    Article  CAS  Google Scholar 

  15. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995

    Article  CAS  Google Scholar 

  16. Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GA, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11(2):391–397

    Article  CAS  Google Scholar 

  17. Khan AD, Miano G (2013) Investigation of plasmonic resonances in mismatched gold nanocone dimers. Plasmonics. doi:10.1007/s11468-11013-19595-x

    Google Scholar 

  18. Shao L, Fang C, Chen H, Man YC, Wang J, Lin H-Q (2012) Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett 12(3):1424–1430

    Article  CAS  Google Scholar 

  19. Xi Z, Lu Y, Yu W, Wang P, Ming H (2013) Improved sensitivity in a T-shaped nanodimer plasmonic sensor. J Opt 15(2):025004

    Article  Google Scholar 

  20. Liu T-R, Zhou Z-K, Jin C, Wang X (2013) Tuning triangular prism dimer into Fano resonance for plasmonic sensor. Plasmonics 8(2):885–890

    Article  CAS  Google Scholar 

  21. Sheikholeslami SN, García-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11(9):3927–3934

    Article  CAS  Google Scholar 

  22. Mei Z, Liang-Sheng L, Ning Z, Qing-Fan S (2013) The Fano-like resonance in self-assembled trimer clusters. Chin Phys Lett 30(7):077802

    Article  Google Scholar 

  23. Liu S-D, Yang Y-B, Chen Z-H, Wang W-J, Fei H-M, Zhang M-J, Wang Y-C (2013) Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J Phys Chem C 117(27):14218–14228

    Article  CAS  Google Scholar 

  24. Liu S-D, Zhang M-J, Wang W-J, Wang Y-C (2013) Tuning multiple Fano resonances in plasmonic pentamer clusters. Appl Phys Lett 102(13):133104–133105, 133105

    Article  Google Scholar 

  25. Ho JF, Luk’yanchuk B, Zhang JB (2012) Tunable Fano resonances in silver–silica–silver multilayer nanoshells. Appl Phys A 107(1):133–137

    Article  CAS  Google Scholar 

  26. He J, Fan C, Wang J, Ding P, Cai G, Cheng Y, Zhu S, Liang E (2013) A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance. J Opt 15(2):025007

    Article  Google Scholar 

  27. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2009) Nanosphere-in-a-nanoshell: a simple nanomatryushka†. J Phys Chem C 114(16):7378–7383

    Article  Google Scholar 

  28. Wu D, Jiang S, Liu X (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115(48):23797–23801

    Article  CAS  Google Scholar 

  29. Liu S-D, Yang Z, Liu R-P, Li X-Y (2012) Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano 6(7):6260–6271

    Article  CAS  Google Scholar 

  30. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2):819–832

    Article  CAS  Google Scholar 

  31. Yang Z-J, Zhang Z-S, Zhang L-H, Li Q-Q, Hao Z-H, Wang Q-Q (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36(9):1542–1544

    Article  Google Scholar 

  32. Wu D, Jiang S, Cheng Y, Liu X (2012) Fano-like resonance in symmetry-broken gold nanotube dimer. Opt Express 20(24):26559–26567

    Article  CAS  Google Scholar 

  33. Schau P, Fu L, Frenner K, Schäferling M, Schweizer H, Giessen H, Gaspar Venancio LM, Osten W (2012) Polarization scramblers with plasmonic meander-type metamaterials. Opt Express 20(20):22700–22711

    Article  Google Scholar 

  34. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9(2):887–891

    Article  CAS  Google Scholar 

  35. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  36. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold–silica–gold multilayer nanoshells. ACS Nano 4(3):1521–1528

    Article  CAS  Google Scholar 

  37. Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  38. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  39. Wang M, Cao M, Chen X, Gu N (2011) Subradiant plasmon modes in multilayer metal–dielectric nanoshells. J Phys Chem C 115(43):20920–20925

    Article  CAS  Google Scholar 

  40. Weng G, Li J, Zhao J (2012) Biosensing potential of three-layered gold–dielectric–gold nanoshells: sensitivity of inter distance of resonance light scattering peaks to the local dielectric environment. Phys E Low-dimensional Syst Nanostruct 44(10):2072–2077

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Daud Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.D., Khan, S.D., Khan, R.U. et al. Excitation of Multiple Fano-Like Resonances Induced by Higher Order Plasmon modes in Three-Layered Bimetallic Nanoshell Dimer. Plasmonics 9, 461–475 (2014). https://doi.org/10.1007/s11468-013-9644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9644-5

Keywords

Navigation