Skip to main content
Log in

Theoretical Considerations on the Responses of Gold-Deposited Surface Plasmon Resonance-Based Glass Rod Sensors Using a Three-Layer Fresnel Equation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The response curves of gold (Au)-deposited surface plasmon resonance-based glass rod sensors were calculated using a three-layer Fresnel equation while considering various parameters for the sensor system calculations. Au films with thicknesses of 30, 45, and 70 nm were deposited on half of the surfaces of the glass rods, which were 2 mm in diameter, with a deposition length of 100 mm. Sensor elements with Au film thicknesses of 45 nm on glass rods with diameters of 1 and 4 mm and with deposition lengths of 10, 20, and 50 mm were also prepared. The sensor system consists of a light-emitting diode (LED) with a wavelength of 654 nm as the light source with a mini-spectrometer as the detector. The LED intensity distribution, the range of the angle of incidence of light into the sensor element, and the thickness distributions of the Au films deposited on the glass rods were considered to be the important parameters for the calculations. The minimum positions of all the theoretical response curves agreed well with those of the experimental response curves within the limits of the experimental and theoretical uncertainties. Most of the overall response characteristics of the theoretical curves agreed well with those of the experimental curves within the limits of both types of uncertainty. It was found that the thickness distribution of the deposited Au film in the cross-sectional direction dominates the sensor response and thus is the most important parameter for calculation of the sensor properties. The agreements between the experimental and theoretical response curves indicate both the potential and the usefulness of the sensor performance estimation process based on the three-layer Fresnel equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3

    Article  CAS  Google Scholar 

  2. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528

    Article  CAS  Google Scholar 

  3. Liu X, Song D, Zhang Q, Tian Y, Ding L, Zhang H (2005) Wavelength-modulation surface plasmon resonance sensor. Trends Anal Chem 24:887

    Article  CAS  Google Scholar 

  4. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118

    Article  Google Scholar 

  5. Weber WH, McCarthy SL (1975) Surface-plasmon resonance as a sensitive optical probe of metal-film properties. Phys Rev B 12:5643

    Article  CAS  Google Scholar 

  6. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099

    Article  CAS  Google Scholar 

  7. Olney RD, Romagnoli RJ (1987) Optical effects of surface plasma waves with damping in metallic thin films. Appl Opt 26:2279

    Article  CAS  Google Scholar 

  8. Sadowski JW, Lekkala J, Vikholm I (1991) Biosensors based on surface plasmons excited in non-noble metals. Biosens Bioelectron 6:439

    Article  CAS  Google Scholar 

  9. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B 12:213

    Article  CAS  Google Scholar 

  10. Jorgenson RC, Yee SS (1994) Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor. Sens Actuators A 43:44

    Article  Google Scholar 

  11. Obando LA, Booksh KS (1999) Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors. Anal Chem 71:5116

    Article  CAS  Google Scholar 

  12. Obando LA, Gentleman DJ, Holloway JR, Booksh KS (2004) Manufacture of robust surface plasmon resonance fiber optic based dip-probes. Sens Actuators B 100:439

    Article  CAS  Google Scholar 

  13. Grunwald B, Holst G (2004) Fibre optic refractive index microsensor based on white-light SPR excitation. Sens Actuators A 113:174

    Article  CAS  Google Scholar 

  14. Iga M, Seki A, Watanabe K (2004) Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens Actuators B 101:368

    Article  CAS  Google Scholar 

  15. Iga M, Seki A, Watanabe K (2005) Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens Actuators B 106:363

    Article  CAS  Google Scholar 

  16. Suzuki H, Sugimoto M, Matsui Y, Kondoh J (2006) Fundamental characteristics of a dual-colour fibre optic SPR sensor. Meas Sci Technol 17:1547

    Article  CAS  Google Scholar 

  17. Balaa K, Kanso M, Cuenot S, Minea T, Louarn G (2007) Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance. Sens Actuators B 126:198

    Article  CAS  Google Scholar 

  18. Suzuki H, Sugimoto M, Matsui Y, Kondoh J (2008) Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sens Actuators B 132:26

    Article  CAS  Google Scholar 

  19. Ronot-Trioli C, Trouillet A, Veillas C, El-Shaikh A, Gagnaire H (1996) Fibre optic chemical sensor based on surface plasmon monochromatic excitation. Anal Chim Acta 319:121

    Article  CAS  Google Scholar 

  20. Trouillet A, Ronot-Trioli C, Veillas C, Gagnaire H (1996) Chemical sensing by surface plasmon resonance in a multimode optical fibre. Pure Appl Opt 5:227

    Article  CAS  Google Scholar 

  21. Ronot-Trioli C, Trouillet A, Veillas C, Gagnaire H (1996) Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor. Sens Actuators A 54:589

    Article  CAS  Google Scholar 

  22. Abdelghani A, Chovelon JM, Krafft JM, Jaffrezic-Renault N, Trouillet A, Veillas C, Ronot-Trioli C, Gagnaire H (1996) Study of self-assembled monolayers of n-alkanethiol on a surface plasmon resonance fibre optic sensor. Thin Solid Films 284–285:157

    Article  Google Scholar 

  23. Abdelghani A, Veillas C, Chovelon JM, Jaffrezic-Renault N, Gagnaire H (1997) Stabilization of a surface plasmon resonance (SPR) optical fibre sensor with an ultra-thin organic film: application to the detection of chloro-fluoro-carbon (CFC). Synth Met 90:193

    Article  CAS  Google Scholar 

  24. Abdelghani A, Chovelon JM, Jaffrezic-Renault N, Ronot-Trioli C, Veillas C, Gagnaire H (1997) Surface plasmon resonance fibre-optic sensor for gas detection. Sens Actuators B 38–39:407

    Article  Google Scholar 

  25. Trouillet A, Veillas C, Goure JP, Gagnaire H (1998) Optical fibre refractive index sensor using surface plasmon resonance and a TiO2 coating obtained by sol–gel process. SPIE 3483:109

    CAS  Google Scholar 

  26. Lin WB, Jaffrezic-Renault N, Gagnaire A, Gagnaire H (2000) The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sens Actuators A 84:198

    Article  CAS  Google Scholar 

  27. Lin WB, Chovelon JM, Jaffrezic-Renault N (2000) Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films. Appl Opt 39:3261

    Article  CAS  Google Scholar 

  28. Lin WB, Lacroix M, Chovelon JM, Jaffrezic-Renault N, Gagnaire H (2001) Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media. Sens Actuators B 75:203

    Article  CAS  Google Scholar 

  29. Abdelghani A, Jaffrezic-Renault N (2001) SPR fibre sensor sensitised by fluorosiloxane polymers. Sens Actuators B 74:117

    Article  CAS  Google Scholar 

  30. Alonso R, Villuendas F, Tornos J, Pelayo J (1993) New ‘in-line’ optical-fibre sensor based on surface plasmon excitation. Sens Actuators A 37–38:187

    Article  Google Scholar 

  31. Homola J (1995) Optical fiber sensor based on surface plasmon excitation. Sens Actuators B 29:401

    Article  CAS  Google Scholar 

  32. Homola J, Slavík R (1996) Fibre-optic sensor based on surface plasmon resonance. Electron Lett 32:480

    Article  CAS  Google Scholar 

  33. Slavík R, Homola J, Čtyroký J (1997) Novel surface plasmon resonance sensor based on single-mode optical fiber. SPIE 3105:325

    Google Scholar 

  34. Slavík R, Homola J, Čtyroký J (1998) Miniaturization of fiber optic surface plasmon resonance sensor. Sens Actuators B 51:311

    Article  Google Scholar 

  35. Slavík R, Homola J, Čtyroký J (1999) Single-mode optical fiber surface plasmon resonance sensor. Sens Actuators B 54:74

    Article  Google Scholar 

  36. Slavík R, Homola J, Čtyroký J, Brynda E (2001) Novel spectral fiber optic sensor based on surface plasmon resonance. Sens Actuators B 74:106

    Article  Google Scholar 

  37. Slavík R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron 17:591

    Article  Google Scholar 

  38. Piliarik M, Homola J, Maníková Z, Čtyroký J (2003) Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens Actuators B 90:236

    Article  CAS  Google Scholar 

  39. Chen WP, Chen JM (1981) Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J Opt Soc Am 71:189

    Article  Google Scholar 

  40. Caide X, Sui S-F (2000) Characterization of surface plasmon resonance biosensor. Sens Actuators B 66:174

    Article  CAS  Google Scholar 

  41. Kurihara K, Suzuki K (2002) Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal Chem 74:696

    Article  CAS  Google Scholar 

  42. Kurihara K, Nakamura K, Hirayama E, Suzuki K (2002) An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane. Anal Chem 74:6323

    Article  CAS  Google Scholar 

  43. Kurihara K, Nakamura K, Suzuki K (2002) Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle. Sens Actuators B 86:49

    Article  CAS  Google Scholar 

  44. Xu Y, Jones NB, Fothergill JC, Hanning CD (2000) Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors. J Mod Opt 47:1099

    Article  CAS  Google Scholar 

  45. Sharma AK, Gupta BD (2004) Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sens Actuators B 100:423

    Article  CAS  Google Scholar 

  46. Xu Y, Cottenden A, Jones NB (2005) An approximate theoretical model of surface plasmon resonance optical waveguide and fibre-optic sensors. Opt Quantum Electron 37:1129

    Article  Google Scholar 

  47. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101:093111

    Article  Google Scholar 

  48. Sharma AK, Mohr GJ (2008) On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations. J Phys D 41:055106

    Article  Google Scholar 

  49. Mitsushio M, Kamata S (1999) Alcohol analysis using a gold-coated unclad fiber sensor system. Bunseki Kagaku 48:757

    Article  CAS  Google Scholar 

  50. Mitsushio M, Yoshidome T, Kamata S (2000) Analyses of carboxylic acid esters and lubricants using a gold-coated optical-fiber sensor system. Bunseki Kagaku 49:307

    Article  CAS  Google Scholar 

  51. Mitsushio M, Higashi S, Higo M (2001) Construction of a gold-coated optical fiber system and analysis of alcohols. in: Proceedings of the IUPAC International Congress on Analytical Sciences 2001 Anal Sci Suppl 17:i1721

  52. Mitsushio M, Higashi S, Higo M (2003) Analyses of alcohols using a gold-deposited optical-fiber refractive index sensor system. Bunseki Kagaku 52:433

    Article  CAS  Google Scholar 

  53. Mitsushio M, Higashi S, Higo M (2003) Theoretical analysis of gold-deposited optical fiber sensor and characterization of the gold film. Anal Sci 19:1421

    Article  CAS  Google Scholar 

  54. Mitsushio M, Higashi S, Higo M (2004) Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols. Sens Actuators A 111:252

    Article  CAS  Google Scholar 

  55. Mitsushio M, Higo M (2004) Simplification and evaluation of a gold-deposited SPR optical fiber sensor. Anal Sci 20:689

    Article  CAS  Google Scholar 

  56. Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sens Actuators A 125:296

    Article  CAS  Google Scholar 

  57. Mitsushio M, Watanabe K, Abe Y, Higo M (2010) Sensor properties and surface characterization of aluminum-deposited SPR optical fibers. Sens Actuators A 163:1

    Article  CAS  Google Scholar 

  58. Mitsushio M, Abe Y, Higo M (2010) Sensor properties and surface characterization of silver-deposited SPR optical fibers. Anal Sci 26:949

    Article  CAS  Google Scholar 

  59. Mitsushio M, Higo M (2011) A gold-deposited surface plasmon resonance-based optical fiber sensor system using various light-emitting diodes. Anal Sci 27:247

    Article  CAS  Google Scholar 

  60. Mitsushio M, Higo M (2012) Properties of a gold-deposited surface plasmon resonance-based glass rod sensor with various light-emitting diodes and its application to a refractometer. Opt Commun 285:3714

    Article  CAS  Google Scholar 

  61. Mitsushio M, Higo M (2012) Metal-deposited optical fiber sensors based on surface plasmon resonance. Bunseki Kagaku 61:999

    Article  CAS  Google Scholar 

  62. Sigma Koki Technical Reference: Characteristic of Glass Materials, http://www.sigma-koki.com/pages/guide/B_optical-data-1_en.php, 2013.9.3.

Download references

Acknowledgments

The authors would like to thank Miss I. Ariyama and Mr. Y. Tominaga for their cooperation in this work. We are also grateful to Associate Professor Kazuyoshi Kurihara of the Faculty of Education and Regional Studies, University of Fukui, for many valuable comments and discussions. This study was supported in part by a Grant-in-Aid for Scientific Research (grant no. 23550100) from the Ministry of Education, Culture, Sports, Science, and Technology and by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) (grant no. AS242Z02538J) from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Mitsushio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsushio, M., Masunaga, T. & Higo, M. Theoretical Considerations on the Responses of Gold-Deposited Surface Plasmon Resonance-Based Glass Rod Sensors Using a Three-Layer Fresnel Equation. Plasmonics 9, 451–459 (2014). https://doi.org/10.1007/s11468-013-9643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9643-6

Keywords

Navigation