Skip to main content
Log in

Spectral Investigations on the Fluorescence Quenching of 1,4-dihydroxy-2,3-dimethylanthracene-9,10-dione by Plasmonic Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) of different sizes have been prepared by Lee and Meisel’s method using trisodium citrate as reducing agent under ultra sonication. Optical absorption and fluorescence emission techniques were employed to investigate the interaction of 1,4-dihydroxy-2,3-dimethyl anthracene-9,10-dione (DHDMAD) with silver nanoparticles. In fluorescence spectroscopic study, we used the DHDMAD and Ag NPs as component molecules for construction of Förster Resonance Energy Transfer (FRET), whereas DHDMAD serve as donor and Ag NPs as acceptor. The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed from 419 nm to 437 nm. The synthesized silver nanoparticles at different heating time intervals were spherical in shape about the size of 25 nm and 55 nm. The fluorescence interaction between silver nanoparticles and DHDMAD confirms the FRET mechanism. According to Förster theory, the distance between silver nanoparticles and DHDMAD and the critical energy transfer distance were calculated and it is increase with heating time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Airineia A, Tigoianu RI, Rusu E, Dorohoi DO (2011) Digest J Nanomater Biostruct 6:1265

    Google Scholar 

  2. Yang J, Dass A, Rawashdeh AMM, Leventis CS, Panzner MJ, Tyson DS et al (2004) Chem Mater 16:3457

    Article  CAS  Google Scholar 

  3. Hsu-Shan H, Jing-Min H, Yee-Min J, Jing-Jer L, Kung-Yuan L, Chang-Hsin S et al (2001) Chem Pharm Bull 49:969

    Article  Google Scholar 

  4. Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209

    Article  CAS  Google Scholar 

  5. Kerker M (1985) J Colloid Interface Sci 105:297

    Article  CAS  Google Scholar 

  6. Mokashi VV, Gore AH, Sudarsan V, Rath MC, Han SH, Patil SR et al (2012) J Photochem Photobiol B Biol 113:63

    Article  CAS  Google Scholar 

  7. Dipak Kumar B, Harekrishna B, Priyanka S, Gobinda Prasad S, Sankar Prasad D, Ajay M (2009) J Mol Liq 145:33

    Article  Google Scholar 

  8. Ghosh D, Chattopadhyay N (2012) Chem Phys Lett 532:52

    Article  CAS  Google Scholar 

  9. Acuna GP, Bucher M, Stein IH, Steinhauer C, Kuzyk A, Holzmeister P et al (2012) J Am Chem Soc 6:3189

    CAS  Google Scholar 

  10. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  11. Chatterjee S, Nandi S, Battacharya SC (2005) J Photochem Photobiol A Chem 173:221

    Article  CAS  Google Scholar 

  12. Umadevi M, Sridevi NA, Sharmila AS, Rajkumar BJM, Briget Mary M, Vanelle P et al (2010) J Fluoresc 20:153

    Article  CAS  Google Scholar 

  13. Umadevi M, Vanelle P, Terme T, Rajkumar BJM, Ramakrishnan V (2009) J Fluoresc 19:3

    Article  CAS  Google Scholar 

  14. Umadevi M, Kavitha SR, Vanelle P, Terme T (2013) Plasmonics 8:859

    Article  CAS  Google Scholar 

  15. Umadevi M, Kavitha SR, Vanelle P, Terme T, Khoumeri O (2013) J Lumin 142:1

    Article  CAS  Google Scholar 

  16. Khoumeri O, Montana M, Terme T, Vanelle P (2008) Tetrahedron 64:11237

    Article  CAS  Google Scholar 

  17. Lee PC, Meisel D (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  18. Roldan MV, Pellegri NS, De Sanctis OA (2012) Pro Mater Sci 1:594

    Article  CAS  Google Scholar 

  19. Bohren CF, Huffman DR (1983) Adsorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  20. Link S, El-Sayed MA (2003) Annu Rev Phys Chem 54:331

    Article  CAS  Google Scholar 

  21. Valmalette JC, Lemaire L, Hornyak GL, Dutta J, Hofmann H (1996) Anal Mag 24:M23

    CAS  Google Scholar 

  22. Henglein A (1998) Chem Mater 10:444

    Article  CAS  Google Scholar 

  23. Brown KR, Walter DG, Natan M (2000) J Chem Mater 12:306

    Article  CAS  Google Scholar 

  24. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) J Chem Phys 116:6755

    Article  CAS  Google Scholar 

  25. Link S, El-Sayed MA (2000) Int Rev Phys Chem 19:409

    Article  CAS  Google Scholar 

  26. Wang ZL (2000) J Phys Chem B 104:1153

    Article  CAS  Google Scholar 

  27. El-Shishtawya RM, Asiri AM, Al-Otaibia MM (2011) Spectrochim Acta A 79:1505

    Article  Google Scholar 

  28. Zhang H, Penn RL, Hamers RJ, Banfield JF (1999) J Phys Chem B 103:4656

    Article  CAS  Google Scholar 

  29. Inacker O, Kuhn H (1974) Chem Phys Lett 27:471

    Article  CAS  Google Scholar 

  30. Huang T, Murray RW (2002) Langmuir 18:7077

    Article  CAS  Google Scholar 

  31. Lakowicz JR (2005) Anal Biochem 337:171

    Article  CAS  Google Scholar 

  32. Förster T (1965) Modern quantum chemistry. Academic, New York

    Google Scholar 

  33. Förster T (1948) Ann Phys 2:55

    Article  Google Scholar 

  34. Ghosh SK, Pal A, Kundu S, Nath S, Pal T (2004) Chem Phys Lett 395:366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance received from UGC and DST-CURIE New Delhi, India for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umadevi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, S.R., Umadevi, M., Vanelle, P. et al. Spectral Investigations on the Fluorescence Quenching of 1,4-dihydroxy-2,3-dimethylanthracene-9,10-dione by Plasmonic Silver Nanoparticles. Plasmonics 9, 443–450 (2014). https://doi.org/10.1007/s11468-013-9642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9642-7

Keywords

Navigation