Skip to main content
Log in

Ambiguous Refractive Index Sensitivity of Fano Resonance on an Array of Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the optical response to refractive index changes of a Fano resonance occurring in a random array of gold nanoparticles supported on a glass substrate. The Fano resonance results from the interference between localized surface plasmon on a gold nanoparticle and the light reflected at the boundary of the glass substrate. We demonstrate that the sensitivity of the resonance to the refractive index of the surrounding medium is highly dependent on the excitation geometry and can assume either positive or negative values. We furthermore present a theoretical analysis explaining this behavior based on the rigorous coupled wave analysis (RCWA) as well as the island film theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90. doi:10.1038/Nphoton.2010.237

    Article  CAS  Google Scholar 

  2. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106

    Article  Google Scholar 

  3. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi:10.1021/Cr068126n

    Article  CAS  Google Scholar 

  4. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and meta-materials. Nat Mater 9(9):707–715. doi:10.1038/Nmat2810

    Article  Google Scholar 

  5. Zhang SP, Bao K, Halas NJ, Xu HX, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  6. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988

    Article  CAS  Google Scholar 

  7. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  CAS  Google Scholar 

  8. Svedendahl M, Käll M (2012) Fano interference between localized plasmons and interface reflections. ACS Nano 6(8):7533–7539. doi:10.1021/Nn302879j

    Article  CAS  Google Scholar 

  9. Svedendahl M, Johansson P, Käll M (2013) Complete light annihilation in an ultrathin layer of gold nanoparticles. Nano Lett 13(7):3053–3058. doi:10.1021/Nl400849f

    Article  CAS  Google Scholar 

  10. Bedeaux DV, Vlieger J (2001) Optical Properties of Surfaces. Imperial College Press, London

    Book  Google Scholar 

  11. Mendoza-Galvan A, Jarrendahl K, Dmitriev A, Pakizeh T, Käll M, Arwin H (2011) Optical response of supported gold nanodisks. Opt Express 19(13):12093–12107

    Article  CAS  Google Scholar 

  12. Maes B, Petráček J, Burger S, Kwiecien P, Luksch J, Richter I (2013) Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt Express 21(6):6794–6806

    Article  Google Scholar 

  13. Čtyroký J, Kwiecien P, Richter I (2013) Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier modal methods. J Eur Opt Soc-Rapid 8. Artn 13024 doi:10.2971/Jeos.2013.13024

  14. Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zaech M, Kasemo B (2007) Hole-mask colloidal lithography. Adv Mater 19(23):4297–4302

    Article  CAS  Google Scholar 

  15. Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  16. Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71(7):811–818. doi:10.1364/Josa.71.000811

    Article  Google Scholar 

  17. Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13(4):779–784. doi:10.1364/Josaa.13.000779

    Article  Google Scholar 

  18. Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13(9):1870–1876. doi:10.1364/Josaa.13.001870

    Article  Google Scholar 

  19. Götz P, Schuster T, Frenner K, Rafler S, Osten W (2008) Normal vector method for the RCWA with automated vector field generation. Opt Express 16(22):17295–17301. doi:10.1364/Oe.16.017295

    Article  Google Scholar 

  20. Granet G (1999) Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J Opt Soc Am A 16(10):2510–2516. doi:10.1364/Josaa.16.002510

    Article  Google Scholar 

  21. Čtyroký J, Kwiecien P, Richter I (2010) Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution. J Lightwave Technol 28(20):2969–2976. doi:10.1109/Jlt.2010.2072983

    Article  Google Scholar 

  22. Bohren CFH, D. R (1983) Absorption and scattering of light by small particles. John Wiley and Sons

  23. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10(2):295–317

    Article  CAS  Google Scholar 

  24. Kvasnička P, Homola J (2008) Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations. Biointerphases 3(3):Fd4–Fd11. doi:10.1116/1.2994687

    Google Scholar 

Download references

Acknowledgments

This research was supported by Praemium Academiae of the Academy of Sciences of the Czech Republic, the Czech Science Foundation (contract P205/12/G118), and by the Ministry of Education, Youth and Sports (contract LH11102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Homola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Špačková, B., Lebrušková, P., Šípová, H. et al. Ambiguous Refractive Index Sensitivity of Fano Resonance on an Array of Gold Nanoparticles. Plasmonics 9, 729–735 (2014). https://doi.org/10.1007/s11468-013-9641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9641-8

Keywords

Navigation