Skip to main content
Log in

Plasmonic Slot Waveguides with Core Nonlinearity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We analytically study the interplay between group velocity dispersion and material dispersion due to femtosecond ultrafast pulse inside plasmonic slot waveguides with nonlinear dielectric core. The analytic investigation of the role of the core nonlinearity on pulse propagation has been investigated. Interestingly, our model shows that the focusing and defocusing effects of the material can be revered if the material is confined inside the core of a plasmonic slot. We confirm our analytical results with nonlinear finite difference time domain (FDTD) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davoyan AR, Shadrivov IV, Kivshar YS (2009) Self-focusing and spatial plasmon-polariton solitons. Opt Exp 17:24

    Google Scholar 

  2. Davoyan AR, Shadrivov IV, Kivshar YS (2008) Nonlinear plasmonic slot waveguides. Opt Exp 16:26

    Google Scholar 

  3. Lau B, Swillam MA, Helmy AS (2010) Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers. Opt Exp 18:26

    Google Scholar 

  4. Zayats AV, Smolyaninovb II, Maradudinc AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  5. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186–5201

    Article  CAS  Google Scholar 

  6. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Phys Rev B 73:035407

    Article  Google Scholar 

  7. Swillam MA, Helmy AS (2012) Feedback effects in plasmonic slot waveguides examined using a closed form model. IEEE Photon Technol Lett 24(6):497–499

    Article  Google Scholar 

  8. Lin C, Swillam MA, Helmy AS (2012) Analytical model for metal–insulator–metal mesh waveguide architectures. J Opt Soc Am B 29:3157–3169

    Article  CAS  Google Scholar 

  9. Hua L, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Exp 19:4

    Google Scholar 

  10. Zhong Z-J, Xu Y, Lan S, Dai Q-F, Wu L-J (2010) Sharp and asymmetric transmission response in metal–dielectric–metal plasmonic waveguides containing Kerr nonlinear media. Opt Exp 18:1

    Article  Google Scholar 

  11. Panoiu N-C, Osgood Jr RM (2004) Subwavelength nonlinear plasmonic nanowire. Nano Lett 4:12

    Article  Google Scholar 

  12. Feigenbaum E, Orenstein M (2007) Plasmon-soliton. Opt Lett 32:6

    Article  Google Scholar 

  13. Davoyan AR, Shadrivov IV, Zharov AA, Gramotnev DK, Kivshar YS (2010) Nonlinear nanofocusing in tapered plasmonic waveguides. Phys Rev Lett 105:116804

    Article  Google Scholar 

  14. Tawfik SA, Swillam MA (2013) Plasmonic slot waveguides with core nonlinearity. In: Proceedings of SPIE 8623 ultrafast pheno mena and nanophotonics XVII, 86231R. doi:10.1117/12.2002879

  15. Samson ZL, Horak P, MacDonald KF, Zheludev NI (2011) Femtosecond surface plasmon pulse propagation. Opt Lett 36:2

    Google Scholar 

  16. Boyd RW (2008) Nonlinear optics. Academic, New York

    Google Scholar 

  17. Agrawal GP (2001) Nonlinear fiber optics. New York

  18. Park J, Kim K-Y, Lee I-M, Na H, Lee S-Y, Lee B (2010) Trapping light in plasmonic waveguides. Opt Exp 18:2

    Google Scholar 

  19. Maier SA (2007) Plasmonics: fundamentals and applications. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif A. Tawfik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swillam, M.A., Tawfik, S.A. Plasmonic Slot Waveguides with Core Nonlinearity. Plasmonics 9, 409–413 (2014). https://doi.org/10.1007/s11468-013-9637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9637-4

Keywords

Navigation