Skip to main content
Log in

Effect of Periodicity in the Resonant Scattering of Light by Finite Sparse Configurations of Many Silver Nanowires

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We consider the two-dimensional (2-D) scattering of the H- and E-polarized plane waves by several discrete configurations made of M> > 1 periodically arranged circular cylindrical silver wires. To find the scattered field, we use the field Fourier expansions in local coordinates and addition theorems for cylindrical functions. Resulting M × M block-type matrix equation is cast to the Fredholm second-kind form that guarantees convergence of numerical solution when each block is truncated to finite dimensions and truncation order is taken larger. The scattering and absorption cross-sections and the near-field patterns are computed. The interplay of plasmon and grating-type resonances is studied for finite in-line and stacked arrays, corners, and crosses made of nano-size silver wires in the visible range of wavelengths, with the refractive index of silver taken from the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ohtaka K, Numata H (1979) Multiple scattering effects in photon diffraction for an array of cylindrical dielectrics. Phys Lett 73-A(5–6):411–413

    Article  Google Scholar 

  2. Carron KT, Fluhr W, Meier M, Wokaun A, Lehmann HW (1986) Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. J Opt Soc Am B 3(3):430–440

    Article  CAS  Google Scholar 

  3. Zinenko TL, Nosich AI, Okuno Y (1998) Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings. IEEE Trans Antennas Propag 46(10):1498–1505, In the H-case, the grating resonances were missed because of too coarse computation grid, in frequency

    Article  Google Scholar 

  4. Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys Rev B 70(12):125113/1–125113/15

    Article  CAS  Google Scholar 

  5. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871/5

    Article  Google Scholar 

  6. Felidj N, Laurent G, Aubard J, Levi G, Hohenau A, Krenn JR, Aussenegg FR (2005) Grating-induced plasmon mode in gold nanoparticle arrays. J Chem Phys 123:221103/1–221103/5

    Article  CAS  Google Scholar 

  7. Gomez-Medina R, Laroche M, Saenz JJ (2006) Extraordinary optical reflection from sub-wavelength cylinder arrays. Opt Exp 14(9):3730–3737

    Article  Google Scholar 

  8. Garcia de Abajo FJG (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79(4):1267–1289

    Article  CAS  Google Scholar 

  9. Marinica DC, Borisov AG, Shabanov SV (2007) Second harmonic generation from arrays of subwavelength cylinders. Phys Rev B 76(8):085311/10

    Article  Google Scholar 

  10. Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl Phys Lett 93(18):181108/3

    Google Scholar 

  11. Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101:087403/4

    Article  Google Scholar 

  12. Auguie B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101:143902/4

    Article  Google Scholar 

  13. Gadsdon MR, Hooper IR, Sambles JR (2008) Optical resonances on subwavelength lamellar gratings. Opt Exp 16(26):22003–22028

    Article  CAS  Google Scholar 

  14. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly—surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Exp 17(4):2334–2340

    Article  CAS  Google Scholar 

  15. Giannini V, Vecchi G, Gomez Rivas J (2010) Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105:266801/4

    Article  Google Scholar 

  16. Byelobrov VO, Ctyroky J, Benson TM, Sauleau R, Altintas A, Nosich AI (2010) Low threshold lasing eigenmodes of an infinite periodic chain of quantum wires. Opt Lett 35(21):3634–3636

    Article  Google Scholar 

  17. Natarov DM, Byelobrov VO, Sauleau R, Benson TM, Nosich AI (2011) Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires. Opt Exp 19(22):22176–22190

    Article  CAS  Google Scholar 

  18. Natarov DM, Sauleau R, Nosich AI (2012) Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite grids of circular silver nanowires. IEEE Photonics Tech Lett 24(1):43–45

    CAS  Google Scholar 

  19. Byelobrov VO, Benson TM, Nosich AI (2012) Binary grating of subwavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements. IEEE J Sel Top Quant Electron 18(6):1839–1846

    Article  CAS  Google Scholar 

  20. Rodriguez SRK, Schaafsma MC, Berrier A, Rivas JG (2012) Collective resonances in plasmonic crystals: size matters. Phys B 407:4081–4085

    Article  CAS  Google Scholar 

  21. Teperik TV, Degiron A (2012) Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles. Phys Rev B 86:245425/5

    Article  Google Scholar 

  22. Ghenuche P, Vincent G, Laroche M, Bardou N, Haidar R, Pelouard J-L, Collin S (2012) Optical extinction in a single layer of nanorods. Phys Rev Lett 109:143903/5

    Article  Google Scholar 

  23. Ricciardi A, Savoia S, Crescitelli Al, Esposito E, Galdi V, Cusano A (2013) Surface vs. bulk sensitivity of sensors based on Rayleigh anomalies in metallic nanogratings. Proc SPIE Opt Sensors. 8774: art. no. 87741 V/8.

  24. Zinenko TL, Marciniak M, Nosich AI (2013) Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization. IEEE J Sel Top Quant Electron 19: (3), art. no. 9000108/8.

  25. Shapoval OV, Nosich AI (2013) Finite gratings of many thin silver nanostrips: optical resonances and role of periodicity. AIP Adv 3(4):042120/13

    Article  Google Scholar 

  26. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403/4

    Google Scholar 

  27. Lord Rayleigh (1907) On the dynamical theory of gratings. Proc Roy Soc Lond A-79:399–416

    Google Scholar 

  28. Martin OJF (2003) Plasmon resonances in nanowires with non-regular cross-section. In: Tominaga J, Tsai DP (Eds.) Optical Nano-Technologies, Topics Appl. Phys., Springer, 88: 183–210.

  29. Fredkin DR, Mayergoyz I (2003) Resonant behavior of dielectric objects (electrostatic resonances). Phys Rev Lett 91:3902–3905

    Article  Google Scholar 

  30. Kottman JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663

    Article  Google Scholar 

  31. Stognii NP, Sakhnenko NK (2013) Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires. IEEE J Sel Top Quant Electron 19:(3), art. 4602207/7.

    Google Scholar 

  32. Biris CG, Panoi NC (2010) Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities. Opt Express 18(16):17165–17179

    Article  CAS  Google Scholar 

  33. Twersky V (1952) On a multiple scattering theory of the finite grating and the Wood anomalies. J Appl Phys 23:1099–1118

    Article  Google Scholar 

  34. Ragheb HA, Hamid M (1985) Scattering by N parallel conducting circular cylinders. Int J Electron 59:407–421

    Article  Google Scholar 

  35. Felbacq D, Tayeb G, Maystre D (1994) Scattering by a random set of parallel cylinders. J Opt Soc Am A 11:2526–2538

    Article  Google Scholar 

  36. Elsherbeni AZ, Kishk AA (1992) Modeling of cylindrical objects by circular dielectric and conducting cylinders. IEEE Trans Antennas Propag 40:96–99

    Article  Google Scholar 

  37. Guida G, Maystre D, Tayeb G (1997) Enhanced normal scattering by lacunary gratings. J Opt Soc Am A 14(2):430–436

    Article  Google Scholar 

  38. She H-Y, Li L-W, Chua SJ, Ewe W-B, Martin OJF, Mosig JR (2008) Enhanced backscattering by multiple nanocylinders illuminated by TE plane wave. J Appl Phys 104:064310/7

    Article  Google Scholar 

  39. Antoine X, Geuzaine C, Ramdani K (2010) Computational methods for multiple scattering at high frequency with applications to periodic structure calculations. In: Ehrhardt M (Ed.) Progress in Computational Physics (PiCP), Bentham Science Publ., pp. 73–107.

  40. Bohren CF, Huffman DR (2007) Absorption and Scattering of Light by Small Particles. Wiley, NY

    Google Scholar 

  41. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4378

    Article  CAS  Google Scholar 

  42. Lochbihler H (2009) Enhanced transmission of TE polarized light through wire gratings. Phys Rev B 79(24):245427/8, Here, the E-polarization case is considered

    Article  Google Scholar 

  43. Offermans P, Schaafsma MC, Rodriguez SRK, Zhang Y, Crego-Calama M, Brongersma SH, Gomez Rivas J (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6):5151–5157

    Article  CAS  Google Scholar 

  44. Limaj O, Lupi S, Mattioli F, Leoni R, Ortolani M (2011) Midinfrared surface plasmon sensor based on a substrateless metal mesh. Appl Phys Lett 98(9):091902/3

    Article  Google Scholar 

  45. Nikitin AG, Kabashin AV, Dallaporta H (2012) Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt Express 20(25):27941–27952

    Article  CAS  Google Scholar 

  46. Murai S, Verschuuren MA, Lozano G, Pirruccio G, Rodriguez SRK, Gomez Rivas J (2013) Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides. Opt Express 21(4):4250–4262

    Article  CAS  Google Scholar 

  47. Mokkapati S, Catchpole KR (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112(10):101101/19

    Article  Google Scholar 

  48. Li XH, Sha WEI, Choy WCH, Fung DDS, Xie FX (2012) Efficient inverted polymer solar cells with directly patterned active layer and silver back grating. ACS J Phys Chem 116(12):7200–7206

    CAS  Google Scholar 

  49. Massiot I, Colin C, Sauvan C, Lalanne P, Roca i Cabarrocas P, Pelouard J-L, Collin S (2013) Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. Optics Express 21(S3):A372-A381

    Article  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the National Academy of Sciences of Ukraine via the Target Program “Nanotechnologies and Nanomaterials,” the European Science Foundation via the travel grants of the Networking Programme “Newfocus,” and the International Visegrad Fund and the Rennes-Metropole Association via the Mobility Grants to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys M. Natarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarov, D.M., Sauleau, R., Marciniak, M. et al. Effect of Periodicity in the Resonant Scattering of Light by Finite Sparse Configurations of Many Silver Nanowires. Plasmonics 9, 389–407 (2014). https://doi.org/10.1007/s11468-013-9636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9636-5

Keywords

Navigation