Skip to main content
Log in

Plasmonically Tunable Blue-Shifted Emission from Coumarin 153 in Ag Nanostructure Random Media: A Demonstration of Fast Dynamic Surface-Enhanced Fluorescence

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Enhancement of intensity and wavelength tunability of emission are desirable features for light-emitting device applications. We report on the large and tunable blue shift (60 nm) in emission from an environment-sensitive fluorophore (Coumarin153) embedded in Ag plasmonic random media. Coumarin 153 having emission at 555 nm, show a systematic blue shift (to 542, 503 and 495 nm) upon infiltration into random media fabricated by Ag nanowires of different aspect ratio (hence, surface plasmon resonances at 426, 445 and 464 nm). The blue shift is due to the fast dynamic surface-enhanced fluorescence mechanism and can be tuned by controlling the surface plasmon resonance and hotspot density in random media. Enhanced emission at desired wavelength is achieved by using nanostructures having higher extinction coefficient but same-surface plasmon resonance. Ag nanostructures of different aspect ratio used for fabricating the random media are synthesized by chemical route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tian M, Huanjun C, Ruibin J, Qian L, Jianfang W (2012) Plasmon-controlled fluorescence beyond the intensity enhancement. J Phys Chem Lett 3:191–202

    Article  Google Scholar 

  2. Hobson PA, Wedge S, Wasey JAE, Sage I, Barnes WL (2002) Surface plasmon mediated emission from organic light-emitting diodes. Adv Mater 14:1393–1396

    Article  CAS  Google Scholar 

  3. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van DRP, Zou SL (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  4. Ray K, Chowdhury MH, Zhang J, Fu Y, Szmacinski H, Nowaczyk K, Lakowicz JR (2010) Plasmon-controlled fluorescence towards high-sensitivity optical sensing. Adv Biochem Eng Biotechnol 116:29–72. doi:10.1007/10_2008_9

    Google Scholar 

  5. Ying J, Hai-YW HW, Bing-RG Y-w H, Yu J, Qi-DC H-BS (2011) Surface plasmon enhanced fluorescence of dye molecules on metal grating films. J Phys Chem C 115:12636–12642

    Article  Google Scholar 

  6. Geddes CD, Joseph RL (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  7. Le REC, Etchegoin PG, Grand J, Felidj N, Aubard J, Levi G (2007) Mechanisms of spectral profile modification in surface-enhanced fluorescence. J Phys Chem C Lett 111(44):16076–16079

    Article  Google Scholar 

  8. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Ku¨rzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002

    Article  CAS  Google Scholar 

  9. Zhao L, Ming T, Chen HJ, Liang Y, Wang JF (2011) Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Nanoscale 3:3849–3859

    Article  CAS  Google Scholar 

  10. Jing Z, Lasse J, Jiha S, Shengli Z, George CS, Richard PVD (2007) Interaction of plasmon and molecular resonances for rhodamine 6g adsorbed on silver nanoparticles. J Am Chem Soc 129:7647–7656

    Article  Google Scholar 

  11. Tamitake I, Yuko SY, Hiroharu T, Vasudevanpillai B, Norio M, Yukihiro O (2013) Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules. Phys Rev B 87:235408

    Article  Google Scholar 

  12. Pedro DG, Riccardo S, Álvaro B, López C (2007) Photonic glass: a novel random material for light. Adv Mater 19:2597–2602

    Article  Google Scholar 

  13. Yongwen T, Jiajun G, Linhua X, Xining Z, Dingxin L, Wang Z, Qinglei L, Shenmin Z, Huilan S, Chuanliang F, Genlian F, Di Z (2012) High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv Funct Mater 22:1578–1585

    Article  Google Scholar 

  14. Daniel AC, Tyler E, McPherson SP, Mingyang C, David A, Dixonand DH (2013) Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueoussolution. Phys Chem Chem Phys 15:850

    Article  Google Scholar 

  15. Brian DW (2009) The use of coumarins as environmentally sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237

    Article  Google Scholar 

  16. Mingjun H, Jiefeng G, Yucheng D, Shiliu Y, Robert KYL (2012) Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. RSC Adv 2:2055–2060

    Article  Google Scholar 

  17. Sönnichsen C, Franzl T, Wilk T, Von PG, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402

    Article  Google Scholar 

  18. Kolwas K, Derkachova A (2013) Damping rates of surface plasmons for particles of size from nano- to micrometers reduction of the nonradiative decay. J Quant Spectrosc Radiat Transf 114:45–55

    Article  CAS  Google Scholar 

  19. John RL, Ronald LB, Tianhong L, Jia X (1986) Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J Chem Phys 84:4174

    Article  Google Scholar 

  20. Miaosi C, In YP, Mian RL, Joel KWY, Xing YL (2013) Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering. Langmuir 29:7061–7069

    Article  Google Scholar 

  21. Benjamin M, Ross LPL (2009) Creating high density nanoantenna arrays via plasmon enhanced particle–cavity (PEP-C) architectures. Opt Express 17(8):6860

    Article  Google Scholar 

  22. Martina A, Yudong W, Pablo A, De GCH, Javier A, Muskens O (2012) Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. ACS NANO 6(7):6462–6470

    Article  Google Scholar 

  23. Novotny L, Hecht B, Pohl DW (1997) Interference of locally excited surface plasmons. J Appl Phys 81(4):1798–1806

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Vijayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingi, J., S, V., Warrier, A.R. et al. Plasmonically Tunable Blue-Shifted Emission from Coumarin 153 in Ag Nanostructure Random Media: A Demonstration of Fast Dynamic Surface-Enhanced Fluorescence. Plasmonics 9, 349–355 (2014). https://doi.org/10.1007/s11468-013-9631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9631-x

Keywords

Navigation