Skip to main content
Log in

Tailoring LSPR-Based Absorption and Scattering Efficiencies of Semiconductor-Coated Au nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Absorption and scattering efficiencies of semiconductor-coated Au nanoshell have been studied by the extended Mie theory for their possible solar cell, optical imaging, and photothermal applications, etc. The effect of Au shell layer thickness, core size, and surrounding medium on the absorption and scattering efficiencies at the localized surface plasmon resonance (LSPR) wavelengths has been reported. It has been found that both the absorption and scattering efficiencies get blue-shifted with an increase in Au shell layer thickness from 2 to 10 nm and with an increase in surrounding refractive index whereas the corresponding LSPR peaks shift towards red. It has also been found that the spectra are red-shifted with an increase in the core radius from 20 to 40 nm while keeping the shell thickness same. The effect of shell thickness on the absorption peak position and absorption linewidth has also been studied. Hence, the optical response of both CdSe- and CdTe-coated Au nanoshells can be tuned and controlled from the visible to the near-infrared (NIR) region of the electromagnetic (EM) spectrum. Finally, the CdSe-coated Au nanoshell exhibits high scattering and absorption efficiencies in comparison to the CdTe-coated nanoshell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  2. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  3. Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6(4):833–838

    Article  CAS  Google Scholar 

  4. Ferreira DL, Silva FO, Viol LCDS, Licinio P, Schiavon MA (2010) Theoretical and experimental studies of stressed nanoparticles of II-VI semiconductors. J Chem Phys 132:014107–1

    Article  Google Scholar 

  5. Baskoutas S, Terzis AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:013708–1

    Article  Google Scholar 

  6. Chili MM, Pullabhotla VSRR, Revaprasadu N (2012) Synthesis of PVP-capped Au-CdSe hybrid nanoparticles. ISRN Metall. doi:10.5402/2012/824179

    Google Scholar 

  7. Li M, Yu XF, Liang S, Peng XN, Yang ZJ, Wang YL, Wang QQ (2011) Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions. Adv Funct Mater 21:1788–1794

    Article  CAS  Google Scholar 

  8. Pradhan AK, Konda RB, Mustafa H, Mundle R, Bamiduro O, Roy UN, Cui Y, Burger A (2008) Surface plasmon resonance in CdSe coated with gold nanoparticles. Optics Express 16(9):6202–6208

    Article  CAS  Google Scholar 

  9. Verma SS (2012) Sekhon JS (2012) Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod. J Opt 41(2):89–93

    Article  Google Scholar 

  10. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106–1

    Article  Google Scholar 

  11. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681–693

    Article  CAS  Google Scholar 

  12. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  13. Conde J, Doria G, Baptista P (2011) Noble metal nanoparticles applications in cancer. J Drug Deliv. doi:10.1155/2012/751075

    Google Scholar 

  14. Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91(8):1038–1052

    CAS  Google Scholar 

  15. Oldenburg SJ, Westcott SL, Averitt RD (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111:4729–4735

    Article  CAS  Google Scholar 

  16. Caruso F, Spasova M, Salgueirino-Maceira V (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13:1090–1094

    Article  CAS  Google Scholar 

  17. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Optics Express 16(24):19579–19591

    Article  CAS  Google Scholar 

  18. Wu D, Xu X, Liu X (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Phys 129:074711

    Article  Google Scholar 

  19. Afzaal M, Brien PO (2006) Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem 16:1597–1602

    Article  CAS  Google Scholar 

  20. Wang Y (2008) Luminescent CdTe and CdSe semiconductor nanocrystals: preparation, optical properties and applications. J Nanosci Nanotechnol 8(3):1068–1091

    CAS  Google Scholar 

  21. Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. Acs Nano 2(4):677–686

    Article  CAS  Google Scholar 

  22. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899. doi:10.1063/1.125183

    Article  CAS  Google Scholar 

  23. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  24. Bansal A, Sekhon JS, Verma SS (2013) Scattering efficiency and LSPR tunability of bimetallic Ag, Au, and Cu nanoparticles. Plasmonics. doi:10.1007/s11468-013-9607-x

    Google Scholar 

  25. Kalsin AM, Pinchuk AO, Smoukov SK, Paszewski M, Schatz GC, Grzybowski BA (2006) Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. Nano Lett 6(9):1896–1903

    Article  CAS  Google Scholar 

  26. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  27. Maier S (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  28. Sekhon JS, Verma SS (2012) Tunable plasmonic properties of silver nanorods for nanosensing applications. J Mater Sci 47:1930–1937

    Article  CAS  Google Scholar 

  29. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  Google Scholar 

  30. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  31. Catchpole KR, Polman A (2008) Plasmonic solar cells. Optics Express 16(26):21793–21800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, Amit Bansal, would like to thank SLIET Longowal for the financial support in the form of institute fellowship towards his Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Verma, S.S. Tailoring LSPR-Based Absorption and Scattering Efficiencies of Semiconductor-Coated Au nanoshells. Plasmonics 9, 335–341 (2014). https://doi.org/10.1007/s11468-013-9629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9629-4

Keywords

Navigation