Skip to main content
Log in

Circular Phase Response-Based Analysis for Swapped Multilayer Metallo-Dielectric Plasmonic Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, two types of nanoplasmonic structures, namely multilayer metallo-dielectric and multilayer-swapped metallo-dielectric structures have been analyzed in context of phase jumps and related phenomena due to the positional swap in the metallo-dielectric block. Phase, reflectivity, and field enhancement plots are also discussed in the angular and wavelength regime. Detailed analysis using circular phase response along with the angled histogram of the phase for both structures provides significant understanding of this swapping phenomenon. Parametric analysis of the metallo-dielectric block has also been demonstrated. Figure of merit defined in complex plane also gives some insight into the performance of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z Physik 216:398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light (surface plasma wave exCitation by light and decay into photons applied to non radiative modes). Z. Natur-forsch. TEIL A 23A:2135–2136

    Google Scholar 

  3. Homola J (2008) Surface palsmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  4. Abeles F, Lopez-rios T (1974) Decoupled optical excitation of surface plasmons at the two surfaces of a thin film. Opt Commun 11(1):89–92

    Article  CAS  Google Scholar 

  5. Sarid D (1981) Long-range surface plasma waves on very thin metal films. Phys Rev Lett 47(26):1927–1930

    Article  CAS  Google Scholar 

  6. Slavik R, Homola J (2006) Simultaneous excitation of long and short range surface plasmons in an asymmetric structure. Opt Commun 259:507–512

    Article  CAS  Google Scholar 

  7. Slavik R, Homola J, Vaisocherova H (2006) Advanced biosensing of short and long range surface plasmons. Meas Sci Technol 17:932–938

    Article  CAS  Google Scholar 

  8. Bera M, Ray M (2009) Precise detection and signature of biological/chemical samples based on surface plasmon resonance. J Opt 38(4):232–248

    Article  Google Scholar 

  9. Guo J, Keathley PD, Hastings JT (2008) Dual mode surface plasmon resonance sensors using angular interrogation. Opt Lett 33:512–514

    Article  Google Scholar 

  10. Dyankov G, Zekriti M, Bousmina M (2011) Plasmon modes management. Plasmonics 6:643–650. doi:10.1007/s11468-011-9246-z

    Article  Google Scholar 

  11. Bera M, Ray M, Long-range and short-range surface plasmon resonance in coupled plasmonic structure using bimetallic nanofilms Proceedings of 5th International conference, CODEC, Kolkata, India, 17–19 December 2012, IEEE catalog number: CFP1201I-CDR, ISBN: 978-1-4673-2618-6, 2012 IEEE, Paper ID: OLT-7-9100, doi:10.1109/CODEC.2012.6509325, pp. 1–4

  12. Bera M, Ray M (2013) Parametric analysis of multi-layer metallo-dielectric coupled plasmonic resonant structures using homo and hetero-bimetallic nanofilms. Opt Commun 294:384–394

    Article  CAS  Google Scholar 

  13. Salamon Z, Macleod HA, Tollin G (1997) Coupled plasmon waveguide resonator: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J 73:2791–2797

    Article  CAS  Google Scholar 

  14. Bera M, Ray M (2011) Coupled plasmonic assisted progressive multiple resonance for dielectric material characterization. Opt Eng 50(10):103801-1-8

    Article  Google Scholar 

  15. Bera M, Ray M, “Phase jumps based analysis for swapped multilayer metallo-dielectric plasmonic structure.”, 37th National symposium of OSI, Pondicherry University, 23–25 January, 2013, paper ID:NPH2, pp. 22–23

  16. Nelson SG, Johnston KS, Yee SS (1996) High sensitivity surface plasmon resonance sensor based on phase detection. Sens Actuators B 35–36:187–191

    Article  Google Scholar 

  17. Kabashin AV, Nikitin PI (1998) Surface plasmon resonance interferometer for bio- and chemical- sensors. Opt Commun 150:5–8

    Article  CAS  Google Scholar 

  18. Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV, Ksenevich TI (1999) Surface plasmon resonance interferometry for biological and chemical sensing. Sens Actuators B 54:43–50

    Article  CAS  Google Scholar 

  19. Grigorenko AN, Nikitin PI, Kabashin AV (1999) Phase jumps and interferometric surface plasmon resonance imaging. Appl Phys Lett 75(25):3917–3919

    Article  CAS  Google Scholar 

  20. Xinglong Y, Dingxin W, Zibo Y (2003) Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sens Actuators B 91:285–290

    Article  Google Scholar 

  21. Nemova G, Kabashin AV, Kashyap R (2008) Surface plasmon-polariton Mach-Zehnder refractive index sensor. J Opt Soc Am B 25(10):1673–1677

    Article  CAS  Google Scholar 

  22. Chiang HP, Yeh HT, Chen CM, Wu JC, Su SY, Chang R, Wu YJ, Tsai D, Jen SU, Leung PT (2004) Surface plasmon resonance monitoring of temperature via phase measurement. Opt Commun 241:409–418

    Article  CAS  Google Scholar 

  23. Zhang Y (2003) Study of an absorption-based surface plasmon resonance sensor in detecting the real part of refractive index. Opt Eng 52(1):014405-1-7

    Google Scholar 

  24. Notcovich AG, Zhuk V, Lipson SG (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76(13):1665–1667

    Article  CAS  Google Scholar 

  25. Chen KH, Hsu CC, Su DC (2002) Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry. Opt Commun 209:167–172

    Article  CAS  Google Scholar 

  26. Wang R, Zhang C, Yang Y, Zhu S, Yuan XC (2012) Focused cylindrical vector beam assisted microscopic pSPR biosensor, with an ultra wide dynamic range. Opt Lett 37(11):2091–2093

    Article  CAS  Google Scholar 

  27. Zhang C, Wang R, Min C, Zhu S, Yuan XC (2013) Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor. Appl Phys Lett 102:011114-1-5

    Google Scholar 

  28. Huang YH, Ho HP, Wu SY, Kong SK (2012) Detecting phase shifts in surface plasmon resonance: a review. Advances in Optical Technologies 2012(471957) doi:10.1155/2012/471957

  29. Born M, Wolf E (1999) Principles of optics (7th) expanded edition. Cambridge University Press, Cambridge

    Google Scholar 

  30. Abeles F (1950) Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies. Application aux couches minces. Ann Phys (Paris) 5:596–640

    Google Scholar 

  31. The Practical Application of Light, MELLES GRIOT, Vol (Catalog) X, Barloworld Scientific, p.4.8

  32. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens Actuators B 41:207–211

    Article  CAS  Google Scholar 

  33. Cortes CL, Newman W, Molesky S, Jacob Z (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14:063001-1-15

    Article  Google Scholar 

Download references

Acknowledgments

The author M. Bera wishes to acknowledge the Council of Scientific and Industrial Research (CSIR), India for providing the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, M., Ray, M. Circular Phase Response-Based Analysis for Swapped Multilayer Metallo-Dielectric Plasmonic Structures. Plasmonics 9, 237–249 (2014). https://doi.org/10.1007/s11468-013-9617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9617-8

Keywords

Navigation