Skip to main content
Log in

Temperature Dependence of Photoluminescence from Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Strong temperature dependence of surface plasmon enhanced photoluminescence from silver nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature decreases. Such an effect has been rationalized as being the result of an increase in the plasmonic enhancement factor as a consequence of the decrease in the plasmon damping constant. The decrease in the damping constant is due to a reduction in the electron–phonon scattering rate with the decrease in temperature. The temperature dependence of the photoluminescence quantum yield is stronger for small nanoparticles which reflects the strengthening of electron–phonon coupling in silver nanoparticles with a decrease of their size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mooradian A (1969) Phys Rev Lett 22:185

    Article  CAS  Google Scholar 

  2. Chen SW, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098

    Article  CAS  Google Scholar 

  3. Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury JT, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) J Am Chem Soc 119:9279

    Article  CAS  Google Scholar 

  4. Apell P, Monreal R, Lundqvist S (1988) Phys Scr 38:174

    Article  CAS  Google Scholar 

  5. Whittle DJ, Burstein E (1981) Bull Am Phys Soc 26:777

    Google Scholar 

  6. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Losytskyy MY, Kotko AV, Pinchuk AO (2009) Phys Rev B 79:235438

    Article  Google Scholar 

  7. Zhang AP, Zhang JZ, Fang Y (2008) J Lumin 128:1635

    Article  CAS  Google Scholar 

  8. Véron O, Blondeau JP, Abdelkrim N, Ntsoenzok E (2010) Plasmonics 5:213

    Article  Google Scholar 

  9. Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) J Chem Phys 108:9137

    Article  CAS  Google Scholar 

  10. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) Chem Phys Lett 317:517

    Article  CAS  Google Scholar 

  11. Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA (2007) Mater Sci Eng B 137:247

    Article  CAS  Google Scholar 

  12. Darugar Q, Qian W, El-Sayed MA, Pileni MP (2006) J Phys Chem B 110:143

    Article  CAS  Google Scholar 

  13. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  14. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  15. Ershov BG, Janata E, Henglein A, Fojtik A (1993) J Phys Chem 97:4589

    Article  CAS  Google Scholar 

  16. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  17. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  18. Fang Y, Seong NH, Dlott DD (2008) Science 321:388

    Article  CAS  Google Scholar 

  19. Ozbay E (2006) Science 311:189

    Article  CAS  Google Scholar 

  20. Muskens OL, Giannini V, Sanchez-Gil JA, Rivas JG (2007) Nano Lett 7:2871

    Article  CAS  Google Scholar 

  21. Zhang YX, Aslan K, Previte MJR, Geddes CD (2007) Appl Phys Lett 90:173116

    Article  Google Scholar 

  22. Boyd GT, Rasing T, Leite JRR, Shen YR (1984) Phys Rev B 30:519

    Article  CAS  Google Scholar 

  23. Boyd GT, Yu ZH, Shen YR (1986) Phys Rev B 33:7923

    Article  CAS  Google Scholar 

  24. Kreibig U (2008) Appl Phys B 93:79

    Article  CAS  Google Scholar 

  25. Challener WA, Peng C, Itagi AV, Karns D, Peng W, Peng Y, Yang XM, Zhu X, Gokemeijer NJ, Hsia Y-T, Ju G, Rottmayer RE, Seigler MA, Gage EC (2009) Nat Photon 3:303

    Article  Google Scholar 

  26. O’Neal D, Hirsch L, Halas N, Payne J, West J (2004) Cancer Lett 209:171

    Article  Google Scholar 

  27. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100:13549

    Article  CAS  Google Scholar 

  28. Lowery A, Gobin A, Day E, Halas N, West J (2006) Breast Cancer Res Treat 100:S289

    Google Scholar 

  29. Lowery A, Gobin A, Day E, Halas N, West J (2006) Int J Nanomed 1:149

    Article  CAS  Google Scholar 

  30. Cao L, Barsic DN, Guichard AR, Brongersma ML (2007) Nano Lett 7:3523

    Article  CAS  Google Scholar 

  31. Cai W, White JS, Brongersma ML (2009) Nano Lett 9:4403

    Article  CAS  Google Scholar 

  32. Kreibig U (1974) J Phys F 4:999

    Article  CAS  Google Scholar 

  33. Doremus RH (1964) J Chem Phys 40:2389

    Article  Google Scholar 

  34. Doremus RH (1965) J Chem Phys 42:414

    Article  CAS  Google Scholar 

  35. Mulvaney P (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley, New York, p 121

    Chapter  Google Scholar 

  36. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Plasmonics 7:685

    Article  CAS  Google Scholar 

  37. Yeshchenko OA, Bondarchuk IS, Gurin VS, Dmitruk IM, Kotko AV (2013) Surf Sci 608:275

    Article  CAS  Google Scholar 

  38. Bouillard J-SG, Dickson W, O’Connor DP, Wurtz GA, Zayats AV (2012) Nano Lett 12:1561

    Article  CAS  Google Scholar 

  39. Govorov AO, Richardson HH (2007) Nano Today 2:30

    Article  Google Scholar 

  40. Fang Z, Zhen Y-R, Neumann O, Polman A, García de Abajo FJ, Nordlander P, Halas NJ (2013) Nano Lett 13:1736

    CAS  Google Scholar 

  41. Valverde-Aguilar G, García-Macedo JA, RenteríaTapia V (2008) J Nano Res 3:103

    Article  CAS  Google Scholar 

  42. Chuang C-M, Wu M-C, Su W-F (2006) Appl Phys Lett 89:061912

    Article  Google Scholar 

  43. Xie FT, Bie HY, Duan LM, Li GH, Zhang X, Xu JQ (2005) J Solid State Chem 178:2858

    Article  CAS  Google Scholar 

  44. Yeshchenko OA, Kondratenko SV, Kozachenko VV (2012) J Appl Phys 111:124327

    Article  Google Scholar 

  45. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Nature 450:402

    Article  CAS  Google Scholar 

  46. Pinchuk A, Kreibig U, Hilger A (2004) Surf Sci 557:269

    Article  CAS  Google Scholar 

  47. A. Pinchuk, U. Kreibig (2003) New J. Phys. 5

  48. Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks/Cole, Belmont

    Google Scholar 

  49. Tillin MD, Sambles JR (1990) J Phys Condens Matter 2:7055

    Article  CAS  Google Scholar 

  50. Fedyanin DY, Krasavin AV, Arsenin AV, Zayats AV (2012) Nano Lett 12:2459

    Article  CAS  Google Scholar 

  51. Li-Jun Z, Jian-Gang G, Ya-Pu Z (2009) Chin Phys Lett 26:066201

    Article  Google Scholar 

  52. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  53. Kittel C (2005) Introduction to solid state physics. Willey, New York

    Google Scholar 

  54. Lincoln RC, Koliwad KM, Ghate PB (1967) Phys Rev 157:463

    Article  CAS  Google Scholar 

  55. Bilotsky Y, Tomchuk PM (2008) Surf Sci 602:383

    Article  CAS  Google Scholar 

  56. Bilotsky Y, Tomchuk PM (2006) Surf Sci 600:4702

    Article  CAS  Google Scholar 

  57. Smith BA, Zhang JZ, Giebel U et al (1997) Chem Phys Lett 270:139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. A. V. Kotko for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Yeshchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeshchenko, O.A., Bondarchuk, I.S., Losytskyy, M.Y. et al. Temperature Dependence of Photoluminescence from Silver Nanoparticles. Plasmonics 9, 93–101 (2014). https://doi.org/10.1007/s11468-013-9601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9601-3

Keywords

Navigation