Skip to main content
Log in

Highly Sensitive Refractive Index Sensing with Surface Plasmon Polariton Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Two prototypical transducer structures are proposed, including a single-waveguide (SW) and Mach–Zehnder interferometer (MZI), implemented with surface plasmon polariton waveguides. Formulas of the output power with structural parameters are deduced respectively. The sensitivities are found to be proportional to S 1 for SW and S 2 for MZI, which are dependent on waveguide parameters. Maximizing S 1 or S 2 maximizes the corresponding sensitivity, leading to optimized waveguide designs and preferred operating wavelengths. Sensitivity parameters S 1 and S 2 are calculated for fundamental modes of V grooves, triangular wedges, and dielectric-loaded surface plasmon polariton waveguides (DLSPPWs), as a function of measured material refractive index n c (n c  = 1.3∼1.6, representative refractive index of biochemical matter), at wavelength λ = 1.55 μm. Finally, the sensitivity S 2 is analyzed as a function of work wavelength for DLSPPWs with different ridge thickness and specific fluidic SPP waveguide for biochemical sensing is presented. The results offer foundations for application of surface plasmon polariton waveguides in biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bozhevolnyi SI et al (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4(2):83–91

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  4. Degiron A, Berini P, Smith DR (2008) Guiding light with long-range plasmons. Opt Photon News 19(7):28–34

    Article  CAS  Google Scholar 

  5. Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61(15):10484–10503

    Article  CAS  Google Scholar 

  6. Moreno E et al (2006) Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt Lett 31(23):3447–3449

    Article  Google Scholar 

  7. Bozhevolnyi SI (2006) Effective-index modeling of channel plasmon polaritons. Opt Express 14(20):9467–9476

    Article  Google Scholar 

  8. Boltasseva A et al (2008) Triangular metal wedges for subwavelength plasmon-polariton guiding at telecomwavelengths. Opt Express 16(8):5252–5260

    Article  Google Scholar 

  9. Pile DFP et al (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87(6):061106

    Article  Google Scholar 

  10. Holmgaard T, Gosciniak J, Bozhevolnyi SI (2010) Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express 18(22):23009–23015

    Article  CAS  Google Scholar 

  11. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75(24):245405

    Article  Google Scholar 

  12. Chien FC, Chen SJ (2004) A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 20(3):633–642

    Article  CAS  Google Scholar 

  13. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B: Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  14. Zourob M et al (2005) Bacteria detection using disposable optical leaky waveguide sensors. Biosens Bioelectron 21(2):293–302

    Article  CAS  Google Scholar 

  15. Harris RD, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sensors Actuators B: Chem 29(1–3):261–267

    Article  CAS  Google Scholar 

  16. Dostálek J et al (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors Actuators B: Chem 76(1–3):8–12

    Article  Google Scholar 

  17. Li XW et al (2011) Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide. Opt Express 19(7):6549–6556

    Article  Google Scholar 

  18. Berini P (2008) Bulk and surface sensitivities of surface plasmon waveguides. New J Phys 1:105010

    Article  Google Scholar 

  19. Xu Z, Mazumder P (2012) Bio-sensing by Mach–Zehnder interferometer comprising doubly-corrugated spoofed surface plasmon polariton (DC-SSPP) waveguide. IEEE Trans Terahertz Sci Technol 2(4):460–466

    Article  CAS  Google Scholar 

  20. Cooper BR, Ehrenreich H, Philipp HR (1965) Optical properties of noble metals. II. Phys Rev 138(2A):A494–A507

    Article  Google Scholar 

  21. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th (Expanded) Edition. Cambridge University Press, Cambridge. p, 289

    Book  Google Scholar 

  22. Arwin H (1986) Optical properties of thin layers of bovine serum albumin, y-globulin, and hemoglobin. Appl Spectrosc 40(3):313–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (no. 61210010), the Fundamental Research Funds for the Central Universities (no. lzujbky-2013-42), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuee Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ma, A., Yang, L. et al. Highly Sensitive Refractive Index Sensing with Surface Plasmon Polariton Waveguides. Plasmonics 9, 71–78 (2014). https://doi.org/10.1007/s11468-013-9599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9599-6

Keywords

Navigation