Skip to main content
Log in

Polarization-Dependent Resonance Light Scattering of Biomolecular Layer Coated Gold Nanoshell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Polarization-dependent resonance light scattering (RLS) of biomolecular layer coated gold nanoshell are investigated theoretically by means of the quasistatic approximation. Both the intensity and wavelength of RLS are sensitive to the azimuth angle and can be tuned by altering the core dielectric constant and biomolecular layer thickness. In the direction parallel to the incident polarization, RLS could be enhanced by decreasing the core dielectric constant or increasing the layer thickness whereas, in the direction perpendicular to the incident polarization, the RLS is only sensitive to the core dielectric constant. The variation of RLS corresponding to the changing of biomolecular layer thickness also greatly depends on the polarization. The variation of RLS intensity always reaches its maximum when the azimuth angle is 0 and can be improved by increasing the gold shell thickness or decreasing the core dielectric constant. However, the variation of RLS wavelength always reaches its maximum when the azimuth angle is between 0 and π/2 and can be improved by decreasing the gold shell thickness or core dielectric constant. This optimization of polarization-dependent RLS response of gold nanoshell to the biocoating is potentially useful in biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Enriquez AC, Rivero Espejel IA, Andrés García E, Díaz-García ME (2008) Enhanced resonance light scattering properties of gold nanoparticles due to cooperative binding. Anal Bioanal Chem 391:807–815

    Article  Google Scholar 

  2. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9:538–544

    Article  CAS  Google Scholar 

  3. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  4. Wu LP, Li YF, Huang CZ, Zhang Q (2006) Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem 78:5570–5577

    Article  CAS  Google Scholar 

  5. Jiang ZL, Zhang Y, Liang AH, Chen CQ, Tian JN, Li TS (2012) Free-labeled nanogold catalytic detection of trace UO2 2+ based on the aptamer reaction and gold particle resonance scattering effect. Plasmonics 7:185–190

    Article  CAS  Google Scholar 

  6. Xiang M, Xu X, Li D, Liu F, Li N, Li K (2008) Selective enhancement of resonance light-scattering of gold nanoparticles by glycogen. Talanta 76:1207–1211

    Article  CAS  Google Scholar 

  7. Xiang M, Xu X, Liu F, Li N, Li KA (2009) Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen–biomacromolecule interactions. J Phys Chem B 113:2734–2738

    Article  CAS  Google Scholar 

  8. Cai HH, Yang PH, Feng J, Cai J (2009) Immunoassay detection using functionalized gold nanoparticle probes coupled with resonance Rayleigh scattering. Sensor Actuat B-Chem 135:603–609

    Article  CAS  Google Scholar 

  9. Fan Y, Long YF, Li YF (2009) A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal Chim Acta 653:207–211

    Article  CAS  Google Scholar 

  10. Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF (2010) Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 397:212–217

    Article  CAS  Google Scholar 

  11. Stobiecka M, Coopersmith K, Hepel M (2010) Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly. J Colloid Interf Sci 350:168–177

    Article  CAS  Google Scholar 

  12. Tao H, Wei L, Liang A, Li J, Jiang Z, Jiang H (2010) Highly sensitive resonance scattering detection of DNA hybridization using aptamer-modified gold nanoparticle as catalyst. Plasmonics 5:189–198

    Article  CAS  Google Scholar 

  13. Wang X, Xu Y, Chen Y, Li L, Liu F, Li N (2011) The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme. Anal Bioanal Chem 400:2085–2091

    Article  CAS  Google Scholar 

  14. Wu C, Xiong C, Wang L, Lan C, Ling L (2010) Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst 135:2682–2687

    Article  CAS  Google Scholar 

  15. Wu DJ, Liu XJ, Li B (2011) Localized surface plasmon resonance properties of two-layered gold nanowire: effects of geometry, incidence angle, and polarization. J Appl Phys 109:083540

    Article  Google Scholar 

  16. Guler U, Turan R (2010) Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express 18:17322–17338

    Article  CAS  Google Scholar 

  17. Al-Rawashdeh NAF, Sandrock ML, Seugling CJ, Foss CA (1998) Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene. J Phys Chem B 102:361–371

    Article  CAS  Google Scholar 

  18. McLellan JM, Li ZY, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017

    Article  CAS  Google Scholar 

  19. Eftekhari F, Gordon R, Ferreira J, Brolo AG, Sinton D (2008) Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Appl Phys Lett 92:253103

    Article  Google Scholar 

  20. Mertens H, Biteen JS, Atwater HA, Polman A (2006) Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Lett 6:2622–2625

    Article  CAS  Google Scholar 

  21. Aslan K, Lakowicz JR, Geddes CD (2005) Angular-dependent polarization-based plasmon light scattering for bioaffinity sensing. Appl Phys Lett 87:234108

    Article  Google Scholar 

  22. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065

    Article  CAS  Google Scholar 

  23. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043

    Article  CAS  Google Scholar 

  24. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B-Opt Phys 16:1824–1832

    Article  CAS  Google Scholar 

  25. Tanabe K (2007) Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater Lett 61:4573–4575

    Article  CAS  Google Scholar 

  26. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  CAS  Google Scholar 

  27. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant nos. 11174232, 61178075, and 81101122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JJ., Zhu, J. & Zhao, JW. Polarization-Dependent Resonance Light Scattering of Biomolecular Layer Coated Gold Nanoshell. Plasmonics 9, 47–54 (2014). https://doi.org/10.1007/s11468-013-9596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9596-9

Keywords

Navigation