Skip to main content
Log in

Investigation of Plasmonic Resonances in Mismatched Gold Nanocone Dimers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The plasmonic properties of two closely adjacent gold nanocones of different sizes have been investigated. The plasmon modes of the first nanocone couple with the plasmon modes of the second one due to which a broad peak and a narrow peak emerges in the extinction spectrum, which can be categorized as bright and dark plasmon modes. The destructive interference of the two modes results in a sharp Fano dip in the spectrum. Several configurations of the conical nanodimer have been considered, which suggests that the plasmon coupling in the nanocone dimer is not only dependent on the interparticle distance and size of the nanoparticles but also on their spatial arrangement. The localized high near-field energy in the nanodimer can be used for surface-enhanced Raman spectroscopy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Banaee MG, Crozier KB (2010) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. Acs Nano 5(1):307–314

    Article  Google Scholar 

  2. Cui X, Erni D (2010) The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers. J Comput Theor Nanosci 7(8):1610–1615

    Article  CAS  Google Scholar 

  3. Wu DJ, Jiang SM, Cheng Y, Liu XJ (2012) Fano-like resonance in symmetry-broken gold nanotube dimer. Opt Express 20(24):26559–26567

    Article  CAS  Google Scholar 

  4. Oubre C, Nordlander P (2005) Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B 109(20):10042–10051

    Article  CAS  Google Scholar 

  5. Yang ZJ, Zhang ZS, Hao ZH, Wang QQ (2011) Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter. Appl Phys Lett 99(8):081103–081107

    Article  Google Scholar 

  6. Yang ZJ, Zhang ZS, Zhang LH, Li QQ, Hao ZH, Wang QQ (2011) Fano resonances in dipole–quadrupole plasmon coupling nanorod dimers. Opt Lett 36(9):1542–1544

    Article  Google Scholar 

  7. Shao L, Fang C, Chen H, Man YC, Wang J, Lin HQ (2012) Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano letters 12(3):1424–1430

    Article  CAS  Google Scholar 

  8. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. Acs Nano 4(2):819–832

    Article  CAS  Google Scholar 

  9. Wu DJ, Jiang SM, Liu XJ (2012) Fano-like resonances in asymmetric homodimer of gold elliptical nanowires. J Phys Chem C 116(25):13745–13748

    Article  CAS  Google Scholar 

  10. Liu H, Wu X, Li B, Xu C, Zhang G, Zheng L (2012) Fano resonance in two-intersecting nanorings: multiple layers of plasmon hybridizations. Appl Phys Lett 100(15):153114

    Article  Google Scholar 

  11. Xi Z, Lu Y, Yu W, Wang P, Ming H (2013) Improved sensitivity in a T-shaped nanodimer plasmonic sensor. J Opt 15(2):025004

    Article  Google Scholar 

  12. Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2):1023–1034

    Article  CAS  Google Scholar 

  13. Khan AD, Miano G (2013) Plasmonic fano resonances in single-layer gold conical nanoshells. Plasmonics. doi:10.1007/s11468-013-9556-4

    Google Scholar 

  14. Chao Y-C, Tseng H-C, Chang K-D, Chang C-W (2012) Three types of couplings between asymmetric plasmonic dimers. Opt Express 20(3):2887–2894

    Article  CAS  Google Scholar 

  15. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano letters 9(2):887–891

    Article  CAS  Google Scholar 

  16. Schau P, Fu L, Frenner K, Schäferling M, Schweizer H, Giessen H, Gaspar Venancio LM, Osten W (2012) Polarization scramblers with plasmonic meander-type metamaterials. Opt Express 20(20):22700–22711

    Article  Google Scholar 

  17. Johnson PB, Christy R (1972) Optical constants of the noble metals. Physl Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  18. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano letters 4(5):899–903

    Article  CAS  Google Scholar 

  19. Grillet N, Manchon D, Bertorelle F, Bonnet C, Broyer M, Cottancin E, Lermé J, Hillenkamp M, Pellarin M (2011) Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding. Acs Nano 5(12):9450–9462

    Article  CAS  Google Scholar 

  20. He J, Fan C, Wang J, Ding P, Cai G, Cheng Y, Zhu S, Liang E (2013) A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance. J Opt 15(2):025007

    Article  Google Scholar 

  21. Zhang Y, Jia T, Zhang S, Feng D, Xu Z (2012) Dipole, quadrupole, and octopole plasmon resonance modes in nonconcentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions. Opt Express 20(3):2924–2931

    Article  CAS  Google Scholar 

  22. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978

    Article  Google Scholar 

  23. Liusman C, Li H, Lu G, Wu J, Boey F, Li S, Zhang H (2012) Surface-enhanced Raman scattering of Ag–Au nanodisk heterodimers. J Phys Chem C 116(18):10390–10395

    Article  CAS  Google Scholar 

  24. Jian Y, Pol VD (2012) Nanocrosses with highly tunable double resonances for near-infrared surface-enhanced Raman scattering. Int J Optics 2012. doi:10.1155/2012/745982

    Google Scholar 

  25. Dodson S, Haggui M, Bachelot R, Plain Jrm, Li S, Xiong Q Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae. J Phys Chem Lett 4 (3):496–501

  26. Sederberg S, Elezzabi A (2011) Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt Express 19(16):15532–15537

    Article  CAS  Google Scholar 

  27. Yun B, Wang Z, Hu G, Cui Y (2010) Theoretical studies on the near field properties of nonconcentric core–shell nanoparticle dimers. Opt Commun 283(14):2947–2952

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Miano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.D., Miano, G. Investigation of Plasmonic Resonances in Mismatched Gold Nanocone Dimers. Plasmonics 9, 35–45 (2014). https://doi.org/10.1007/s11468-013-9595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9595-x

Keywords

Navigation