Skip to main content

Collective Electronic Excitations in Thin Ag Films on Ni(111)


The collective electronic excitations in thin Ag films deposited onto the Ni(111) surface were studied by high-resolution electron energy loss spectroscopy. A broad loss peak at 7.7 eV was assigned to the Ag multipole plasmon, in excellent agreement with calculations based on s-d polarization model. Ag multipole plasmon was excited only at grazing incidence. Furthermore, a strong dependence on the impinging energy exists. Multipole plasmon could be measured only for a very strict range of primary electron beam energies and it was excited by electrons scattered at a reflection plane located just underneath the jellium edge. Such mode was found to be dramatically more sensible to the state of the surface with respect to ordinary surface plasmon. Moreover, we report experimental evidence of interference effects in surface plasmon excitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Gao S, Yuan Z (2005) Emergence of collective plasmon excitation in a confined one-dimensional electron gas. Phys Rev B 72(12):121406(R)

    Article  Google Scholar 

  2. 2.

    Yan J, Gao S (2008) Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons. Phys Rev B 78(23)

  3. 3.

    Yan J, Yuan Z, Gao S (2007) End and central plasmon resonances in linear atomic chains. Phys Rev Lett 98(21):216602

    Article  Google Scholar 

  4. 4.

    Yuan Z, Gao S (2006) Linear-response study of plasmon excitation in metallic thin films: layer-dependent hybridization and dispersion. Phys Rev B 73(15):155411

    Article  Google Scholar 

  5. 5.

    Yuan Z, Gao S (2008) Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surf Sci 602(2):460–464

    CAS  Article  Google Scholar 

  6. 6.

    Yuan Z, Jiang Y, Gao Y, Käll M, Gao S (2011) Symmetry-dependent screening of surface plasmons in ultrathin supported films: the case of Al/Si(111). Phys Rev B 83(16):165452

    Article  Google Scholar 

  7. 7.

    Qin H, Gao Y, Teng J, Xu H, Wu KH, Gao S (2010) Laterally tunable plasmon resonance in confined biatomic-layer Ag nanodisks. Nano Lett 10(8):2961–2964

    CAS  Article  Google Scholar 

  8. 8.

    Qin H, Jiang Y, Zhang G, Wu K (2013) Interaction of surface and interface plasmons in extremely thin Al films on Si(111). Appl Phys Lett 102(5):051605–051605

    Article  Google Scholar 

  9. 9.

    Feng B, Qin H, He J, He X, Cheng P, Chen L, Wu K (2012) Tuning the surface plasmon on Ag(111) by organic molecules. J Appl Phys 112(2):023302–023304

    Article  Google Scholar 

  10. 10.

    Yu YH, Jiang Y, Tang Z, Guo QL, Jia JF, Xue QK, Wu KH, Wang EG (2005) Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Phys Rev B 72(20):205405

    Article  Google Scholar 

  11. 11.

    Yu YH, Tang Z, Jiang Y, Wu KH, Wang EG (2006) Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon. Surf Sci 600(22):4966–4971

    CAS  Article  Google Scholar 

  12. 12.

    Liebsch A (1997) Electronic excitations at metal surfaces. Plenum, New York

    Book  Google Scholar 

  13. 13.

    Politano A, Formoso V, Chiarello G (2009) Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattice Microst 46(1–2):137–140

    CAS  Article  Google Scholar 

  14. 14.

    Rocca M, Biggio F, Valbusa U (1990) Surface-plasmon spectrum of Ag(001) measured by high-resolution angle-resolved electron-energy-loss spectroscopy. Phys Rev B 42(5):2835–2841

    CAS  Article  Google Scholar 

  15. 15.

    Rocca M, Lazzarino M, Valbusa U (1991) Comment on surface-plasmon energy and dispersion on Ag single crystals. Phys Rev Lett 67(22):3197

    CAS  Article  Google Scholar 

  16. 16.

    Rocca M, Lazzarino M, Valbusa U (1992) Plasmon damping and surface interband-transitions on Ag(001) and (011). Surf Sci 270:560–562

    Article  Google Scholar 

  17. 17.

    Rocca M, Li Y, Buatier de Mongeot F, Valbusa U (1995) Surface plasmon dispersion and damping on Ag(111). Phys Rev B 52(20):14947–14953

    CAS  Article  Google Scholar 

  18. 18.

    Rocca M, Moresco F (1996) HREELS and ELS-LEED studies of surface plasmons on Ag and Pd single crystals. Prog Surf Sci 53(2–4):331–340

    CAS  Article  Google Scholar 

  19. 19.

    Li YB, Levi AC, Rocca M (1995) Anisotropy of surface-plasmons in metals. Surf Sci 336(3):371–376

    CAS  Article  Google Scholar 

  20. 20.

    Eguiluz A, Ying SC, Quinn JJ (1975) Influence of the electron density profile on surface plasmons in a hydrodynamic model. Phys Rev B 11(6):2118–2121

    Article  Google Scholar 

  21. 21.

    Tsuei KD, Plummer EW, Liebsch A, Kempa K, Bakshi P (1990) Multipole plasmon modes at a metal surface. Phys Rev Lett 64(1):44–47

    CAS  Article  Google Scholar 

  22. 22.

    Zielasek V, Rönitz N, Henzler M, Pfnür H (2006) Crossover between monopole and multipole plasmon of Cs monolayers on Si(111) individually resolved in energy and momentum. Phys Rev Lett 96(19):196801

    Article  Google Scholar 

  23. 23.

    Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L (2000) Surface-plasmon dispersion and multipole surface plasmons in Al(111). Phys Rev B 62(19):12676–12679

    CAS  Article  Google Scholar 

  24. 24.

    Barman SR, Biswas C, Horn K (2004) Collective excitations on silver surfaces studied by photoyield. Surf Sci, 566–568 (1–3 PART 1), 538–543

  25. 25.

    Barman SR, Biswas C, Horn K (2004) Electronic excitations on silver surfaces. Phys Rev B 69(4):454131–454139

    Article  Google Scholar 

  26. 26.

    Barman SR, Häberle P, Horn K (1998) Collective and single-particle excitations in the photoyield spectrum of Al. Phys Rev B 58(8)

  27. 27.

    Barman SR, Horn K (1999) Photoemission study of electronic excitations at clean metal surfaces and thin metal films. Appl Phys A 69(5):519–527

    CAS  Article  Google Scholar 

  28. 28.

    Barman SR, Horn K, Haberle P, Ishida H, Liebsch A (1998) Photoinduced plasmon excitations in alkali-metal overlayers. Phys Rev B 57(11):6662–6665

    CAS  Article  Google Scholar 

  29. 29.

    Barman SR, Stampfl C, Häberle P, Ibañez W, Cai YQ, Horn K (2001) Collective excitations in alkali metals on Al(111). Phys Rev B 64(19):1954101–19541013

    Article  Google Scholar 

  30. 30.

    Häberle P, Ibaez W, Barman SR, Cai YQ, Horn K (2001) Photoexcited collective modes in thin alkali layers adsorbed on Al. Nucl Instrum Meth B 182(1–4):102–108

    Article  Google Scholar 

  31. 31.

    Moresco F, Rocca M, Zielasek V, Hildebrandt T, Henzler M (1996) Evidence for the presence of the multipole plasmon mode on Ag surfaces. Phys Rev B 54(20):14333–14336

    Article  Google Scholar 

  32. 32.

    Liebsch A (1998) Prediction of a Ag multipole surface plasmon. Phys Rev B 57(7):3803–3806

    CAS  Article  Google Scholar 

  33. 33.

    Varykhalov A, Shikin AM, Gudat W, Moras P, Grazioli C, Carbone C, Rader O (2005) Probing the ground state electronic structure of a correlated electron system by quantum well states: Ag/Ni(111). Phys Rev Lett 95(24):247601

    CAS  Article  Google Scholar 

  34. 34.

    Moresco F, Rocca M, Hildebrandt T, Henzler M (1999) Plasmon confinement in ultrathin continuous Ag films. Phys Rev Lett 83(11):2238–2241

    CAS  Article  Google Scholar 

  35. 35.

    Politano A, Chiarello G (2009) Collective electronic excitations in systems exhibiting quantum well states. Surf Rev Lett 16(2):171–190

    CAS  Article  Google Scholar 

  36. 36.

    Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Phys Status Solidi RRL 3(5):136–138

    CAS  Article  Google Scholar 

  37. 37.

    Politano A, Formoso V, Chiarello G (2008) Dispersion and damping of gold surface plasmon. Plasmonics 3(4):165–170

    CAS  Article  Google Scholar 

  38. 38.

    Politano A, Formoso V, Chiarello G (2009) Electronic properties of metallic bilayers deposited on Cu(111): a comparative study. Surf Sci 603(6):933–937

    CAS  Article  Google Scholar 

  39. 39.

    Politano A, Marino AR, Chiarello G (2012) Effects of a humid environment on the sheet plasmon resonance in epitaxial graphene. Phys Rev B 86(8):085420

    Article  Google Scholar 

  40. 40.

    Langer T, Förster DF, Busse C, Michely T, Pfnür H, Tegenkamp C (2011) Sheet plasmons in modulated graphene on Ir(111). New J Phys 13(5):053006

    Article  Google Scholar 

  41. 41.

    Liu Y, Willis RF (2009) The evolution of sheet-plasmon behavior in silver monolayers on Si(111)-(√3 × √3)-Ag surface. Surf Sci 603(13):2115–2119

    CAS  Article  Google Scholar 

  42. 42.

    Pfnür H, Langer T, Baringhaus J, Tegenkamp C (2011) Multiple plasmon excitations in adsorbed two-dimensional systems. J Phys Condens Matter 23(11):112204

    Article  Google Scholar 

  43. 43.

    Politano A, Marino AR, Formoso V, Farías D, Miranda R, Chiarello G (2011) Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys Rev B 84(3):033401

    Article  Google Scholar 

  44. 44.

    Politano A, Chiarello G, Formoso V, Agostino RG, Colavita E (2006) Plasmon of Shockley surface states in Cu(111): a high-resolution electron energy loss spectroscopy study. Phys Rev B 74(8):081401

    Article  Google Scholar 

  45. 45.

    Tsuei KD, Plummer EW, Liebsch A, Pehlke E, Kempa K, Bakshi P (1991) The normal modes at the surface of simple metals. Surf Sci 247(2–3):302–326

    CAS  Article  Google Scholar 

  46. 46.

    Nazarov VU (1999) Multipole surface plasmon excitation enhancement in metals. Phys Rev B 59(15):9866–9869

    CAS  Article  Google Scholar 

  47. 47.

    Silkin VM, Chulkov EV, Echenique PM (2004) Band structure versus dynamical exchange-correlation effects in surface plasmon energy and damping: a first-principles calculation. Phys Rev Lett 93(17):176801

    CAS  Article  Google Scholar 

  48. 48.

    Rocca M (1995) Low-energy EELS investigation of surface electronic excitations on metals. Surf Sci Rep 22(1–2):1–71

    CAS  Article  Google Scholar 

  49. 49.

    Claesson D, Lindgren SA, Wahlström E, Walldén L (1998) Reversal of an adsorption-substitution structure change for Li/Cu(111) induced by O2 or H2O exposure. Phys Rev B 57(7):3795–3798

    CAS  Article  Google Scholar 

  50. 50.

    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): dependence of water reactivity as a function of Na coverage. J Chem Phys 126(24):244712

    CAS  Article  Google Scholar 

  51. 51.

    Politano A, Marino AR, Formoso V, Chiarello G (2011) Hydrogen bonding at the water/quasi-freestanding graphene interface. Carbon 49(15):5180–5184

    CAS  Article  Google Scholar 

  52. 52.

    Politano A, Chiarello G (2010) Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement. Chem Phys Lett 494:84–87

    CAS  Article  Google Scholar 

  53. 53.

    Blass PM, Zhou XL, White JM (1990) Coadsorption and reaction of water and potassium on silver(III). J Phys Chem 94(7):3054–3062

    CAS  Article  Google Scholar 

  54. 54.

    Gleeson MA, Mårtensson K, Kasemo B, Chakarov D (2004) Co-adsorption and reactions of Na and H2O on graphite. Appl Surf Sci 235(1–2):91–96

    CAS  Article  Google Scholar 

  55. 55.

    Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46(1–8):1–308

    CAS  Article  Google Scholar 

  56. 56.

    Diaconescu B, Pohl K, Vattuone L, Savio L, Hofmann P, Silkin VM, Pitarke JM, Chulkov EV, Echenique PM, Farías D, Rocca M (2007) Low-energy acoustic plasmons at metal surfaces. Nature 448:57–59

    CAS  Article  Google Scholar 

  57. 57.

    Levinson HJ, Plummer EW, Feibelman PJ (1979) Effects on photoemission of the spatially varying photon field at a metal surface. Phys Rev Lett 43(13):952–955

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Antonio Politano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Politano, A., Formoso, V. & Chiarello, G. Collective Electronic Excitations in Thin Ag Films on Ni(111). Plasmonics 8, 1683–1690 (2013).

Download citation


  • Silver
  • Electron energy loss spectroscopy
  • Multipole plasmon