Skip to main content
Log in

The Effect of Ag Nanoparticles on Surface-Enhanced Luminescence from Au Nanovoid Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Studies comparing the effect of adding two different nanoparticle compositions on the plasmonic properties of Au nanovoid arrays were undertaken. Surface-enhanced resonance luminescence and surface-enhanced resonance Raman studies comparing dispersed Ag nanoparticles and Ag nanoparticle aggregates on gold nanovoid arrays were undertaken. These studies showed that using Ag nanoparticle aggregates increased both luminescence and Raman efficiency relative to when dispersed nanoparticles were used; in addition, these studies also showed that adding dispersed Ag nanoparticles supported a more reproducible enhancement in luminescence and Raman across the substrate compared to using Ag nanoparticle aggregates. Finite element analysis simulations indicated that surface plasmon polariton distribution in the sample was affected by the presence of the Ag nanoparticles on the Au nanovoid array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Charlier JC (2002) Defects in carbon nanotubes. Account Chem Res 35(12):1063

    Article  CAS  Google Scholar 

  2. Rice JH, Robinson JW, Joujour A, Taylor RA, Oliver RA, Briggs GAD, Kappers MJ, Humphreys CJ (2004) Temporal variation in optical transitions from single InGaN quantum dots. Appl Phys Lett 84:4110–41104

    Article  CAS  Google Scholar 

  3. Taylor RA, Robinson JW, Rice JH, Jarjour A, Smith JD, Oliver RA, Briggs GAD, Kappers MJ, Humphreys CJ, Arakawa Y (2004) Dynamics of single InGaN quantum dots. Physica E 21:285–288

    Article  CAS  Google Scholar 

  4. Rice JH, Galaup JP, Leach S (2002) Fluorescence and phosphorescence spectroscopy of C70 in toluene solid solution at 5K: switching of character for the lowest lying state. Chem Phys 279(1):23

    Article  CAS  Google Scholar 

  5. Martin RW, Edwards PR, Rice JH, Robinson JW, Joujour A, Taylor RA, Oliver R, Briggs GAD (2005) Luminescence properties of isolated InGaN/GaN quantum dots. Phys Stat Sol A 202(3):372

    Article  CAS  Google Scholar 

  6. Na JH, Taylor RA, Rice JH, Robinson JW, Lee KW, Park YS, Park CM, Kang TW (2005) Time-resolved and time-integrated photoluminescence studies of coupled asymmetric GaN quantum discs embedded in AlGaN barriers. Appl Phys Letts 86(8):083109

    Article  Google Scholar 

  7. Rice JH, Aures R, Galaup JP, Leach S (2001) Fluorescence spectroscopy of C60 in toluene at 5K. Chem Phys 263:401–414

    Article  CAS  Google Scholar 

  8. Carville NC, Manzo M, Damm S, Castiella M, Collins L, Denning D, Weber SAL, Gallo K, Rice JH, Rodriguez BJ (2012) Photoreduction of SERS-active metallic nanostructures on chemically-patterned ferroelectric crystals. ACS Nano 6(8):7373

    Article  CAS  Google Scholar 

  9. Na JH, Taylor RA, Rice JH, Robinson JW, Lee KW, Park YS, Park CM, Kang TW (2005) Two-dimensional exciton behavior in GaN nanocolumns grown by molecular-beam epitaxy. Appl Phys Letts 86(12):123102

    Article  Google Scholar 

  10. Rice JH (2007) Fluorescence microscopy beyond the diffraction limit: fluorescence imaging with ultrahigh resolution. Mol Biosyst 3:781–793

    Article  CAS  Google Scholar 

  11. Hill G, Rice JH, Meech SR, Kuo P, Vodopyanov K, Reading M (2009) Nano-infrared surface imaging using an OPO and an AFM. Opt Lett 34:431–433

    Article  CAS  Google Scholar 

  12. Nie S, Emory S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102

    Article  CAS  Google Scholar 

  13. Al-Alttar N, Kennedy E, Kopf I, Giordani S, Rice JH (2012) Surface-enhanced Raman scattering from small numbers of purified and oxidised single-walled carbon nanotubes. Chem Phys Lett 535:146–151

    Article  Google Scholar 

  14. Kneipp K, Wang K, Kneipp H, Perelman L, Itzkan I (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Let 78:1667–1670

    Article  CAS  Google Scholar 

  15. Xu H, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318

    Article  CAS  Google Scholar 

  16. Jose B, Steffen R, Neugebauer U, Sheridan E, Marthi R, Forster RJ, Keyes TE (2009) Emission enhancement within gold spherical nanocavity arrays Phys. Chem Chem Phys 11(4):10923

    Article  CAS  Google Scholar 

  17. Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell AE, Bartlett PN (2006) Localized and delocalized plasmons in metallic nanovoids. Phys Rev B 74(24):245415

    Article  Google Scholar 

  18. Cortes E, Tognalli NG, Fainstein A, Vela AM, Salvarezza RC (2009) Ag-modified Au nanocavity SERS substrates. Phys Chem Chem Phys 11(34):7469

    Article  CAS  Google Scholar 

  19. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2010) Surface enhanced resonance Raman and luminescence on plasmon active nanostructured cavities. Appl Phys Letts 97(15):153110

    Article  Google Scholar 

  20. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2011) Site selective surface enhanced Raman on nanostructured cavities. Appl Phys Letts 99(3):033104

    Article  Google Scholar 

  21. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2012) Enhanced fluorescence from nanostructured cavities. J Phys Chem C 116(2):1784

    Article  CAS  Google Scholar 

  22. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals. Nano Letts 5(11):2262

    Article  CAS  Google Scholar 

  23. Sugawara Y, Kelf TA, Baumberg JJ, Abdelsalam ME, Bartlett PN (2006) Strong coupling between localized plasmons and organic excitons in metal nanovoids. Phys Rev Letts 97(26):266808

    Article  CAS  Google Scholar 

  24. Huang FM, Wilding D, Speed JD, Russell AE, Bartlett PN, Baumberg JJ (2011) Dressing plasmons in particle-in-cavity architectures. Nano Letts 11(3):1221

    Article  CAS  Google Scholar 

  25. Lordan F, Al-Attar N, Mallon C, Bras J, Collet G, Forster RJ, Keyes TE, Rice JH (2013) Temperature dependence of a1 and b2 type modes in the surface enhanced Raman from 4-aminobenzenethiol. Chem Phys Lett 556:158–162

    Article  CAS  Google Scholar 

  26. Speed JD, Johnson RP, Hugall JT, Lal NN, Bartlett PN, Baumberg JJ, Russell AE (2011) SERS from molecules bridging the gap of particle-in-cavity structures. Chem Comm 47(22):6335

    Article  CAS  Google Scholar 

  27. Ross BM, Lee LP (2009) Creating high density nanoantenna arrays via plasmon enhanced particle–cavity (PEP–C) architectures. Opt Express 17(8):6860

    Article  Google Scholar 

  28. Ratyakshi R, Chauhan R (2009) Colloidal synthesis of silver nano particles. Asian J Chem 21(10):113

    Google Scholar 

  29. Aslan K, Gryczynski I, Malicha, Matveeva E, Lakowicz JR, Geddas CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55

    Article  CAS  Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Science Foundation Ireland (SFI) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Rice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lordan, F., Damm, S., Kennedy, E. et al. The Effect of Ag Nanoparticles on Surface-Enhanced Luminescence from Au Nanovoid Arrays. Plasmonics 8, 1567–1575 (2013). https://doi.org/10.1007/s11468-013-9573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9573-3

Keywords

Navigation