Skip to main content

Advertisement

Log in

Plasmon-Enhanced Light Trapping to Improve Efficiency of TiO2 Nanorod-Based Dye-Sensitized Solar Cell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance incurred by silver nanoparticles is used to enhance the photoelectric conversion efficiency of a TiO2 nanorod-based dye-sensitized solar cell (DSSC). Improved light transmission is observed experimentally in silver nanoparticle-coated FTO glass. The transmission data are used to explore the effect on electrical parameters of DSSC using theoretical model. Current density increased from 11.7 to 12.34 mA/cm2 and open-circuit voltage increased from 704 to 709.5 mV. Overall efficiency enhancement of 6.67 % is observed in TiO2 nanorod-based DSSC due to plasmon-induced light trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nazeeruddin MK, Baranoff E, Gratzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178

    Article  CAS  Google Scholar 

  2. Franco G, Gehring J, Peter LM, Ponomarev EA, Uhlendorf I (1999) Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 103:692–698

    Article  CAS  Google Scholar 

  3. Cherepy NJ, Smestad GP, Gratzel M, Zhang JZ (1997) Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J Phys Chem B 101:9342–9351

    Article  CAS  Google Scholar 

  4. Peter LM, Wijayantha KGU (1999) Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochem Commun 1:576–580

    Article  CAS  Google Scholar 

  5. Fredin K, Nissfolk J, Hagfeldt A (2005) Brownian dynamics simulations of electrons and ions in mesoporous films. Sol Energy Mater Sol Cells 86:283–297

    Article  CAS  Google Scholar 

  6. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells. Electrochem Commun 2:658–662

    Article  CAS  Google Scholar 

  7. Peter LM, Wijayantha KGU (2000) Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochim Acta 45:4543–4551

    Article  CAS  Google Scholar 

  8. Papageorgiou N, Gratzel M, Infelta PP (1996) On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Sol Energy Mater Sol Cells 44:405–438

    Article  CAS  Google Scholar 

  9. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K (2003) High-performance carbon counter electrode for dye-sensitized solar cells. Sol Energy Mater Sol Cells 79:459–469

    Article  CAS  Google Scholar 

  10. Kang SH, Choi SH, Kang MS, Kim JY, Kim HS, Hyeon T, Sung YE (2008) Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater 20:54–58

    Article  CAS  Google Scholar 

  11. Jiu J, Isoda S, Wang F, Adachi M (2006) Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J Phys Chem B 110:2087–2092

    Article  CAS  Google Scholar 

  12. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Heidelberg

    Google Scholar 

  13. Ihara M, Kanno M, Inoue S (2010) Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Physica E Low Dimens Syst Nanostruct 42:2867–2871

    Article  CAS  Google Scholar 

  14. Hägglund C, Zäch M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113–15

    Article  Google Scholar 

  15. Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600

    Article  CAS  Google Scholar 

  16. Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409

    Article  CAS  Google Scholar 

  17. Ding I-K, Zhu J, Cai W, Moon S-J, Cai N, Wang P, Zakeeruddin SM, Grätzel M, Brongersma ML, Cui Y, McGehee MD (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1:52–57

    Article  CAS  Google Scholar 

  18. Sodergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556

    Article  Google Scholar 

  19. Gomez R, Salvador P (2005) Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model. Sol Energy Mater Sol Cells 88:377–388

    Article  CAS  Google Scholar 

  20. Ni M, Leung MKH, Leung DYC (2008) Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell. Can J Chem Eng 86:35–42

    Article  CAS  Google Scholar 

  21. Rothenberger G, Comte P, Gratzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 58:321–336

    Article  CAS  Google Scholar 

  22. Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275

    Article  CAS  Google Scholar 

  23. Saito Y, Kambe S, Kitamura T, Wada Y, Yanagida S (2004) Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Sol Energy Mater Sol Cells 83:1–13

    Article  CAS  Google Scholar 

  24. Ni M, Leung MKH, Leung DYC, Sumathy K (2006) An analytical study of the porosity effect on dye-sensitized solar cell performance. Sol Energy Mater Sol Cells 90:1331–1344

    Article  CAS  Google Scholar 

  25. Dai H, Li M, Li Y, Yu H, Bai F, Ren X (2012) Effective light trapping enhancement by plasmonic. Ag nanoparticles on silicon pyramid surface Optics Express 20(S4):A502–A509

    Article  CAS  Google Scholar 

  26. Marco LD, Manca M, Giannuzzi R, Malara F, Melcarne G, Ciccarella G, Zama I, Cingolani R, Gigli G (2010) Novel preparation method of TiO2-nanorods-based photoelectrodes for dye-sensitized solar cells with improved light harvesting efficiency. J Phys Chem C 114:4228–4236

    Article  Google Scholar 

  27. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  28. Westcott SL, Jackson JB, Radloff C, Halas NJ (2002) Relative contributions to the plasmon line shape of metal nanoshells. Phys Rev B 66:155431-1-5

    Article  Google Scholar 

  29. Bing Z, Dong-Sheng L, Lue-Lue X, De-Ren Y (2010) Enhanced optical absorption of amorphous silicon films by Ag nanostructures. Chin Phys Lett 27:037303-1-4

    Google Scholar 

  30. Tripathi B, Kumar M (2013) Application of metal nano-particle embedded dielectric thin-film to improve efficiency of dye-sensitized solar cell. J. Nano Energy Power Res (in press)

  31. Fang ZY, Dai T, Fu Q, Zhang B, Zhu X (2009) Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal. J Microsc 235:138–143

    Article  CAS  Google Scholar 

  32. Fang Z, Huang S, Lu Y, Pan A, Lin F, Zhu X (2010) Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. Phys Rev B 82:085403-1-7

    Google Scholar 

  33. Fang Z, Huang S, Lin F, Zhu X (2009) Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt Express 17:20327–20332

    Article  CAS  Google Scholar 

  34. Fang Z, Lin C, Ma R, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4(1):75–82

    Article  CAS  Google Scholar 

  35. Fang Z, Lin F, Huang S, Song W, Zhu X (2009) Focusing surface plasmon polariton trapping of colloidal particles. Appl Phys Lett 94:063306-1-3

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge that a part of the reported work (characterization) was carried out at the CEN, IITB under INUP at IITB which have been sponsored by DIT, MCIT, Government of India. They also acknowledge Dr. Utpal S. Joshi, Department of Physics, Electronic & Space Science, Gujarat University, Ahmedabad, India for AFM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, B., Yadav, P. & Kumar, M. Plasmon-Enhanced Light Trapping to Improve Efficiency of TiO2 Nanorod-Based Dye-Sensitized Solar Cell. Plasmonics 8, 1501–1507 (2013). https://doi.org/10.1007/s11468-013-9564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9564-4

Keywords

Navigation