, Volume 8, Issue 1, pp 159–165 | Cite as

Direct Fabrication Route to Plastic-Supported Gold Nanoparticles for Flexible NIR-SERS

  • Giuseppe V. Bianco
  • Maria Losurdo
  • Maria M. Giangregorio
  • Pio Capezzuto
  • Giovanni Bruno


Stable gold nanoparticles with surface plasmon resonance tunable from visible (Vis) to near-infrared (NIR) are deposited via a direct sputtering methodology on large area polyethylene terephthalate (PET) to be used as effective, flexible NIR surface-enhanced Raman scattering (SERS) substrates. An O2 plasma treatment of PET is used to tailor growth dynamics, geometry, and plasmonic properties of nanoparticles. The O2 plasma treatment of PET results also in effective improvement of nanoparticle anchoring on the plastic substrate, providing more stable, flexible SERS systems. The functionality of fabricated SERS substrates has been tested using benzylthiol, and SERS enhancement factors in the range 104 have been achieved, which are comparable with those reported in literature for gold nanostructures fabricated on silicon substrate. These results attest the great potentiality of this methodology for the production of cost-effective flexible and reusable large-scale SERS substrates.


NIR-SERS Gold nanoparticles Plastic substrate O2 plasma 


  1. 1.
    Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54CrossRefGoogle Scholar
  2. 2.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496CrossRefGoogle Scholar
  3. 3.
    Dougan JA, Faulds K (2012) Surface enhanced Raman scattering for multiplexed detection. Analyst 137:545–554CrossRefGoogle Scholar
  4. 4.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, HeidelbergGoogle Scholar
  5. 5.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648CrossRefGoogle Scholar
  6. 6.
    Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433CrossRefGoogle Scholar
  7. 7.
    Giallongo G, Pilot R, Durante C, Rizzi GA, Signorini R, Bozio R, Gennaro A, Granozzi G (2011) Silver nanoparticle arrays on a DVD-derived template: an easy&cheap SERS substrate. Plasmonics 6:725–733CrossRefGoogle Scholar
  8. 8.
    Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25CrossRefGoogle Scholar
  9. 9.
    Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P (2007) Tuning plasmons on nano-structured substrates for NIR-SERS. Phys Chem Chem Phys 9:104–109CrossRefGoogle Scholar
  10. 10.
    Lee W, Lee SY, Briber RM, Rabin O (2011) Self-assembled SERS substrates with tunable surface plasmon resonances. Adv Funct Mater 21:3424–3429CrossRefGoogle Scholar
  11. 11.
    Smitha SL, Gopchandran KG, Ravindran TR, Prasad VS (2011) Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 22:265705CrossRefGoogle Scholar
  12. 12.
    Wang L (2011) A durable plastic substrate for surface-enhanced Raman spectroscopy. Appl Phys A 102:121–125CrossRefGoogle Scholar
  13. 13.
    Geissler M, Li K, Cui B, Clime L, Veres T (2009) Plastic substrates for surface-enhanced Raman scattering. J Phys Chem C 113:17296–17300CrossRefGoogle Scholar
  14. 14.
    Park I, Ko SH, Pan H, Grigoropoulos CP, Pisano AP, Fréchet JMJ, Lee E, Jeong J (2008) Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles. Adv Mater 20:489–496CrossRefGoogle Scholar
  15. 15.
    Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo SK (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219CrossRefGoogle Scholar
  16. 16.
    Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin GA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313CrossRefGoogle Scholar
  17. 17.
    Huang X, El-Sayed IH, Qian WM, El-Sayed A (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  18. 18.
    Kundu S, Panigrahi S, Praharaj S, Basu S, Ghosh SK, Pal A, Pal T (2007) Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18:075712CrossRefGoogle Scholar
  19. 19.
    Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529CrossRefGoogle Scholar
  20. 20.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  21. 21.
    Lin WC, Liao LS, Chen YH, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201–206CrossRefGoogle Scholar
  22. 22.
    Fèlidj N, Aubard J, Lèvi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095CrossRefGoogle Scholar
  23. 23.
    Domingo C, Resta V, Sanchez-Cortes S, Garcia-Ramos JV, Gonzalo J (2007) Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy. J Phys Chem C 111:8149–8152CrossRefGoogle Scholar
  24. 24.
    Bruno G, Bianco GV, Giangregorio MM, Sacchetti A, Capezzuto P, Losurdo M (2010) A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics. Appl Phys Lett 96:043104CrossRefGoogle Scholar
  25. 25.
    Losurdo M, Giangregorio MM, Bianco GV, Suvorova AA, Kong C, Rubanov S, Capezzuto P, Humlicek J, Bruno G (2010) Size dependence of the dielectric function of silicon-supported plasmonic gold nanoparticles. Phys Rev B 82:155451CrossRefGoogle Scholar
  26. 26.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface-enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26CrossRefGoogle Scholar
  27. 27.
    Mock JJ, Norton SM, Chen S-Y, Lazarides AA, Smith DR (2011) Electromagnetic enhancement effect caused by aggregation on SERS-active gold nanoparticles. Plasmonics 6:113–124CrossRefGoogle Scholar
  28. 28.
    Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanoparticle Res 11:1521–1554CrossRefGoogle Scholar
  29. 29.
    Tao Y, Wu C, Eu J, Lin W (1997) Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold. Langmuir 13:4018–4023CrossRefGoogle Scholar
  30. 30.
    Bruggeman DAG (1935) Ann Phys 416:636–664CrossRefGoogle Scholar
  31. 31.
    Link SS, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  32. 32.
    Gerenser LJ (1990) Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: the effect of oxygen-plasma treatment. J Vac Sci Technol A 8:3682–3691CrossRefGoogle Scholar
  33. 33.
    Nakamura Y, Suzuki Y, Watanabe Y (1996) Effect of oxygen plasma etching on adhesion between polyimide films and metal. Thin Solid Flms 290:367–369CrossRefGoogle Scholar
  34. 34.
    Ardelean H, Petit S, Laurens P, Marcus P, Arefi-Khonsari F (2005) Effects of different laser and plasma treatments on the interface and adherence between evaporated aluminium and polyethylene terephthalate films: X-ray photoemission, and adhesion studies. Appl Surf Sci 243:304–318CrossRefGoogle Scholar
  35. 35.
    Wang B, Eberhardt W, Kuck H (2005) Adhesion of PVD layers on liquid crystal polymer pretreated by oxygen-containing plasma. Vacuum 79:124–128CrossRefGoogle Scholar
  36. 36.
    Siegel J, Kotál V (2007) Preparation of thin metal layers on polymers. Acta Polytechnica 47(1):9–11Google Scholar
  37. 37.
    Kotal V, Svorcık V, Slepicka P, Sajdl P, Blahova O, Sutta P, Hnatowicz V (2007) Gold coating of poly(ethyleneterephthalate) modified by argon plasma. Plasma Process Polym 4:69–76CrossRefGoogle Scholar
  38. 38.
    Mie G (1908) Ann Phys 25:377CrossRefGoogle Scholar
  39. 39.
    Kim KL, Lee SJ, Kim K (2004) Surface-enhanced Raman scattering of benzyl phenyl sulfide in silver sol: excitation-wavelength-dependent surface-induced photoreaction. J Phys Chem B 108:9216–9220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Giuseppe V. Bianco
    • 1
  • Maria Losurdo
    • 1
  • Maria M. Giangregorio
    • 1
  • Pio Capezzuto
    • 1
  • Giovanni Bruno
    • 1
  1. 1.Institute of Inorganic Methodologies and Plasmas, IMIP-CNRUniversity of BariBariItaly

Personalised recommendations