Plasmonics

, Volume 8, Issue 1, pp 129–132 | Cite as

Plasmonic Heating-Assisted Transformation of SiO2/Au Core/Shell Nanospheres (Au Nanoshells): Caveats and Opportunities for SERS and Direct Laser Writing

  • Ivano Alessandri
  • Matteo Ferroni
  • Laura E. Depero
Article

Abstract

The selective modification of silica/gold nanospheres (gold nanoshells) driven by plasmonic heating is demonstrated. Direct laser writing and reshaping of nanoshell assemblies can be easily controlled and exploited for nanofabrication purposes. The modified nanoshells exhibit improved surface enhanced Raman scattering, allowing to settle most of the issues related to nanoshell stability under working conditions.

Figure

The selective modification of silica/gold nanospheres (gold nanoshells) driven by plasmonic heating is demonstrated. Direct laser writing and reshaping of nanoshell assemblies can be easily controlled and exploited for nanofabrication purposes. The modified nanoshells exhibit improved surface enhanced Raman scattering (SERS), allowing to settle most of the issues related to nanoshell stability under working conditions

Keywords

Gold nanoshells Laser writing Plasmonic heating SERS 

References

  1. 1.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243CrossRefGoogle Scholar
  2. 2.
    Jackson JB, Halas NJ (2004) Proc Natl Acad Sci U S A 101:17930CrossRefGoogle Scholar
  3. 3.
    Hirsch R, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci U S A 100:13540CrossRefGoogle Scholar
  4. 4.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Science 328:1135CrossRefGoogle Scholar
  5. 5.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Na L (2010) Nano Lett 10:2721CrossRefGoogle Scholar
  6. 6.
    Lassiter JB, Knight MW, Mirin NA, Halas NJ (2009) Nano Lett 9:4326CrossRefGoogle Scholar
  7. 7.
    Alessandri I, Depero LE (2008) Nanotechnology 19:305301CrossRefGoogle Scholar
  8. 8.
    Alessandri I, Ferroni M, Depero LE (2009) ChemPhysChem 10:1017CrossRefGoogle Scholar
  9. 9.
    Alessandri I, Depero LE (2009) Chem Commun 17:2359CrossRefGoogle Scholar
  10. 10.
    Alessandri I, Ferroni M (2009) J Mater Chem 19:7990CrossRefGoogle Scholar
  11. 11.
    Alessandri I, Ferroni M, Depero LE (2011) J Phys Chem C 115:5174CrossRefGoogle Scholar
  12. 12.
    Aguirre CM, Moran CE, Young JF, Halas NJ (2004) J Phys Chem B 108:7040CrossRefGoogle Scholar
  13. 13.
    Alessandri I, Bontempi E, Bergese P, Depero LE (2011) Encyclopedia of nanoscience and nanotechnology, Nalwa ed., APS, ValenciaGoogle Scholar
  14. 14.
    Alessandri I, Colloid J (2010) Interf Sci 351:576Google Scholar
  15. 15.
    Hansen H, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New YorkGoogle Scholar
  16. 16.
    De Los Santos VL, Lee D, Seo J, Leon FL, Bustamante DA, Suzuki S, Majima Y, Mitrelias T, Ionescu A, Barnes CHW (2009) Surf Sci 603:2978CrossRefGoogle Scholar
  17. 17.
    Matthews TS, Sawyer C, Ogletree DF, Liliental-Weber Z, Chrzan DC, Wu J (2012) Phys Rev Lett 108:096102CrossRefGoogle Scholar
  18. 18.
    Pal S, Depero LE, Alessandri I (2010) Nanotechnology 19:305301Google Scholar
  19. 19.
    Sinha G, Depero LE, Alessandri I (2011) ACS Appl Mater Interf 3:2557CrossRefGoogle Scholar
  20. 20.
    Alessandri I, Depero LE (2010) ACS Appl Mater Interf 2:594CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ivano Alessandri
    • 1
  • Matteo Ferroni
    • 2
  • Laura E. Depero
    • 1
  1. 1.INSTM and Chemistry for Technologies LaboratoryUniversity of BresciaBresciaItaly
  2. 2.CNR-INFM, IDASC, Sensor LaboratoryUniversity of BresciaBresciaItaly

Personalised recommendations