Skip to main content
Log in

New Gold Nanoparticles Adhesion Process Opening the Way of Improved and Highly Sensitive Plasmonics Technologies

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Gold nanostructures have very suitable physical properties for plasmonic applications but do not stick on glass substrates. One usually uses a chromium adhesion layer that gives good mechanical adhesion but quench the plasmon. We developed a new adhesion process that permits a covalent bonding between gold and glass thanks to an MPTMS molecular layer throughout nanolithography process. We demonstrate that this new adhesion layer allows an improvement of the optical properties of the gold nanoparticles as well as an essential improvement of their surface-enhanced Raman scattering performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  2. Kneipp K et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  3. Douglas P, Stokes RJ, Graham D, Smith WE (2008) Immunoassay for P38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst 133:791–796

    Article  CAS  Google Scholar 

  4. Stokes RJ et al (2008) Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Appl Spectrosocopy 62:371–376

    Article  CAS  Google Scholar 

  5. Qian X et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  6. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125:588–593

    Article  CAS  Google Scholar 

  7. Stuart DA et al (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78:7211

    Article  CAS  Google Scholar 

  8. Das G et al (2009) Nano-patterned SERS substrate: application for protein analysis vs. température. Biosen Bioelect 24:1693–1699

    Article  CAS  Google Scholar 

  9. David C, Guillot N, Shen H, Toury T, Lamy de la Chapelle M (2010) SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21:475501

    Article  Google Scholar 

  10. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  11. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  12. Félidj N et al (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095

    Article  Google Scholar 

  13. Grand J et al (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72:33407

    Article  Google Scholar 

  14. Guillot N et al (2010) Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength. Appl Phys Lett 97:023113

    Article  Google Scholar 

  15. Park SH, Im JH, Im JW, Chun BH, Kim JH (1999) Adsorption kinetics of Au and Ag Nanoparticles on functionalized glass surfaces. Microchem J 63:71–91

    Article  CAS  Google Scholar 

  16. Goss CA et al (1991) Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold elctrodes on glass substrates. Anal Chem 63:85–88

    Article  CAS  Google Scholar 

  17. Charles DE et al (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 4:55–64

    Article  CAS  Google Scholar 

  18. Wokaun AW (1984) In: H. Ehrenreich, F. Seitz, D. Turnbull (eds) Solid state physics, Vol. 38. Academic: New York, p. 223

  19. Grandidier J et al (2010) Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl Phys Lett 96:063105

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Discomar French project (Agence Nationale de la Recherche—grant no. 07-P2IC-002), the Nanoantenna European project (FP7-Health-F5-2009-241818) and the Conseil Régional de Champagne-Ardenne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothée Toury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamy de la Chapelle, M., Shen, H., Guillot, N. et al. New Gold Nanoparticles Adhesion Process Opening the Way of Improved and Highly Sensitive Plasmonics Technologies. Plasmonics 8, 411–415 (2013). https://doi.org/10.1007/s11468-012-9405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9405-x

Keywords

PACS

Navigation