, Volume 8, Issue 2, pp 377–383 | Cite as

Near-Field Optical Imaging of a Porous Au Film: Influences of Topographic Artifacts and Surface Plasmons

  • Yu-Hsuan Lin
  • Benjamin Händel
  • Hung Ji Huang
  • Hsiang-An Chen
  • Yung-Fu Chen
  • Heh-Nan Lin
  • Din Ping Tsai


In this work, near-field scanning optical microscopy is employed to study a porous Au film and the direct observation of topographic artifacts and surface plasmon influences is revealed. Under tip illumination, topographic artifacts are found to be present in a reflection mode optical image but not in a transmission mode image. A simple algorithm is used for filtering the topographic artifacts and extracting a correct near-field optical image approximately. On the other hand, surface plasmon influences are present in both modes. By using three exciting wavelengths of 488, 647.1, and 520.8 nm, it is confirmed that a suitable wavelength should be chosen for avoiding the surface plasmon interference in a near-field optical investigation of morphological or material dielectric contrast. Finally, plasmonic or nonplasmonic regions on the porous Au film can be identified from the observed optical intensity variation in the optical images obtained at incident polarizations of 0°, 90°, and 45°.


Near-field scanning optical microscopy Porous gold film Topographic artifact Surface plasmon 


  1. 1.
    Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651–653CrossRefGoogle Scholar
  2. 2.
    Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 60:2484–2486CrossRefGoogle Scholar
  3. 3.
    Reddick RC, Warmack RJ, Ferrell TL (1989) New form of scanning optical microscopy. Phys Rev B 39:767–770CrossRefGoogle Scholar
  4. 4.
    Tsai DP, Lu YY (1998) Tapping-mode tuning fork force sensing for near-field scanning optical microscopy. Appl Phys Lett 73:2724–2726CrossRefGoogle Scholar
  5. 5.
    Betzig E, Trautman J (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195CrossRefGoogle Scholar
  6. 6.
    Tsai DP, Lin WC (2000) Probing the near fields of the super-resolution near-field optical structure. Appl Phys Lett 77:1413–1415CrossRefGoogle Scholar
  7. 7.
    Tsai DP, Yang CW, Lin WC, Ho FH, Huang HJ, Chen MY, Tseng TF, Lee CH, Yeh CJ (2000) Dynamic aperture of near-field super resolution structures. Jpn J Appl Phys 39:982–983CrossRefGoogle Scholar
  8. 8.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  9. 9.
    Emory R, Nie S (1997) Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal Chem 69:2631–2635CrossRefGoogle Scholar
  10. 10.
    Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64:045411CrossRefGoogle Scholar
  11. 11.
    Imura K, Nagahara T, Okamoto H (2005) Near-field optical imaging of plasmon modes in gold nanorods. J Chem Phys 122:154701CrossRefGoogle Scholar
  12. 12.
    Hecht B, Sick B, Wild UP, Decker V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112:7761–7774CrossRefGoogle Scholar
  13. 13.
    Hecht B, Bielefeldt H, Inouye Y, Pohl DW, Novotny L (1997) Facts and artifacts in near-field optical microscopy. J Appl Phys 81:2492–2498CrossRefGoogle Scholar
  14. 14.
    Carminati R, Madrazo A, Nieto-Vesperinas M, Greffet J-J (1997) Optical content and resolution of near-field optical images: influence of the operating mode. J Appl Phys 82:501–509CrossRefGoogle Scholar
  15. 15.
    Gucciardi PG, Colocci M (2001) Different contrast mechanisms induced by topography artifacts in nearfield optical microscopy. Appl Phys Lett 79:1543–1545CrossRefGoogle Scholar
  16. 16.
    Valle PJ, Greffet J-J, Carminati R (1999) Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy. J Appl Phys 86:648–656CrossRefGoogle Scholar
  17. 17.
    Wang X, Fan Z, Tang T (2005) Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy. J Opt Soc Am A 22:2730–2736CrossRefGoogle Scholar
  18. 18.
    Jordan CE, Stranick SJ, Richter LJ, Cavanagh RR (1999) Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode. J Appl Phys 86:2785–2789CrossRefGoogle Scholar
  19. 19.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  20. 20.
    Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Markel VA, George TF (2001) Optics of nanostructured materials. Wiley, New YorkGoogle Scholar
  22. 22.
    Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333CrossRefGoogle Scholar
  23. 23.
    Huang HJ, Yu CP, Chang HC, Chiu KP, Chen HM, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nano-rod. Opt Express 15:7132–7139CrossRefGoogle Scholar
  24. 24.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature (London) 391:667–669CrossRefGoogle Scholar
  25. 25.
    Park TH, Mirin N, Lassiter JB, Nehl CL, Halas NJ, Nordlander P (2008) Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2:25–32CrossRefGoogle Scholar
  26. 26.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRefGoogle Scholar
  27. 27.
    Parsons J, Hendry E, Burrows CP, Auguié B, Sambles JR, Barnes WL (2009) Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys Rev B 79:073412CrossRefGoogle Scholar
  28. 28.
    Liu WC, Tsai DP (2001) Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys Rev B 65:155423CrossRefGoogle Scholar
  29. 29.
    Ho FH, Lin WY, Chang HH, Lin YH, Liu WC, Tsai DP (2001) Nonlinear optical absorption in the AgOx-type super-resolution near-field structure. Jpn J Appl Phys 40:4101–4102CrossRefGoogle Scholar
  30. 30.
    Lin WC, Kao TS, Chang HH, Lin YH, Fu YH, Wu CT, Chen KH, Tsai DP (2003) Study of a super-resolution optical structure: polycarbonate/ZnS–SiO2/ZnO/ZnS–SiO2/Ge2Sb2Te5/ZnS–SiO2. Jpn J Appl Phys 42:1029–1030CrossRefGoogle Scholar
  31. 31.
    Zhou H, Jin L, Xu W (2007) New approach to fabricate nanoporous gold film. Chin Chem Lett 18:365–368CrossRefGoogle Scholar
  32. 32.
    Devaux E, Ebbesen TW, Weeber JC, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83:4936–4938CrossRefGoogle Scholar
  33. 33.
    Eggersa G, Rosenbergera A, Helda N, Münnemanna A, Güntherodta G, Fumagallib P (1998) Scanning near-field magneto-optic microscopy using illuminated fiber tips. Ultramicroscopy 71:249–256CrossRefGoogle Scholar
  34. 34.
    Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl Phys Lett 72:3115–3117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yu-Hsuan Lin
    • 1
    • 2
  • Benjamin Händel
    • 1
  • Hung Ji Huang
    • 1
  • Hsiang-An Chen
    • 3
  • Yung-Fu Chen
    • 2
  • Heh-Nan Lin
    • 3
  • Din Ping Tsai
    • 1
    • 4
    • 5
  1. 1.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan
  2. 2.Department of ElectrophysicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  5. 5.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations