Skip to main content
Log in

Polarization-Insensitive Metal–Semiconductor–Metal Nanoplasmonic Structures for Ultrafast Ultraviolet Detectors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a theoretical design principle of polarization-insensitive metal–semiconductor–metal (MSM) structure for ultraviolet photodetectors based on one-dimensional nanogratings. Because the Fabry–Pérot cavity modes supported by a 100-nm-thick ZnO layer with nanostructures for transverse electric and transverse magnetic polarized incidence overlap with each other, a polarization-insensitive absorption enhancement for the ZnO layer at UV wavelengths is achieved, which can be implemented as a nano-interdigitated electrode to address a long-existing limitation between the speed and the responsivity for conventional MSM photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Razeghi M, Rogalski A (1996) Semiconductor ultraviolet detectors. J Appl Phys 79:7433

    Article  CAS  Google Scholar 

  2. Razeghi M (2002) Short-wavelength solar-blind detectors-status, prospects, and markets. Proc IEEE 90:1006

    Article  CAS  Google Scholar 

  3. Monroy E, Omnes F, Calle F (2003) Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol 18:R33

    Article  CAS  Google Scholar 

  4. Munoz E, Monroy E, Pau JL, Calle F, Omnes F, Gibart P (2001) III-nitrides and UV detectors. J Phys Condens Matter 13:7115

    Article  CAS  Google Scholar 

  5. Joshi RP, Dharamsi AN, McAdoo J (1994) Simulations for the highspeed response of GaN metal semiconductor metal photodetectors. Appl Phys Lett 64:3611

    Article  CAS  Google Scholar 

  6. Sun J, Liu F, Huang H, Zhao J, Hu Z, Zhang X, Wang Y (2010) Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering. Appl Surf Sci 257:921

    Article  CAS  Google Scholar 

  7. Carrano JC, Li T, Brown DL, Grudowski PA, Eiting CJ, Dupuis RD, Campbell JC (1998) Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN. Appl Phys Lett 73:2405

    Article  CAS  Google Scholar 

  8. Jianliang Li, Ying Xu, Hsiang TY, Donaldson WR (2004) Picosecond response of gallium-nitride metal–semiconductor–metal photodetectors. Appl Phys Lett 84:2091

    Article  Google Scholar 

  9. J Deng, S Halder, JCM Hwang, A Osinsky, H Seigneur, WV Schoenfeld, and L Chernyak. Radio-frequency characteristics of ultraviolet optical links, Technical Dig. Asia-Pacific Microwave Photonics Conf., Apr. 2007, pp. 201-203

  10. Drost RJ, Moore TJ, Sadler BM (2011) UV communications channel modeling incorporating multiple scattering interactions. J Opt Soc Am A 28:686

    Article  Google Scholar 

  11. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through subwavelength hole arrays. Nature 391:667

    Article  CAS  Google Scholar 

  12. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845

    Article  CAS  Google Scholar 

  13. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601

    Article  CAS  Google Scholar 

  14. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  15. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391

    Article  CAS  Google Scholar 

  16. Ishi T, Fujikata J, Makita K, Baba T, Ohashi K (2005) Si nano-photodiode with a surface plasmon antenna. Jpn J Appl Phys 44:L364–L366

    Article  CAS  Google Scholar 

  17. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  CAS  Google Scholar 

  18. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  19. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39

    Article  CAS  Google Scholar 

  20. Maier S, Andrews SR, Martin-Moreno L, Garcia-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97:176805

    Article  Google Scholar 

  21. Gan Q, Fu Z, Ding Y, Bartoli F (2008) Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100:256803

    Article  Google Scholar 

  22. Gan Q, Fu Z, Ding Y, Bartoli F (2007) Bidirectional subwavelength slit splitter for THz surface plasmons. Opt Express 15:18050

    Article  Google Scholar 

  23. Liu Z, Wei Q, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957

    Article  CAS  Google Scholar 

  24. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534

    Article  CAS  Google Scholar 

  25. Gan Q, Zhou L, Dierolf V, Bartoli FJ (2009) Direct mapping of the UV surface plasmons. Opt Lett 34:1324

    Article  CAS  Google Scholar 

  26. Zhou L, Gan Q, Bartoli FJ, Dierolf V (2009) Direct near-field optical imaging of UV bowtie nanoantennas. Opt Express 17:20301

    Article  Google Scholar 

  27. Gan Q, Zhou L, Dierolf V, Bartoli FJ (2009) UV plasmonic structures: direct observations of UV extraordinary optical transmission and localized field enhancement through nanoslits. IEEE Photonics J 1:245

    Article  Google Scholar 

  28. Ding G, Deng J, Zhou L, Gan Q, Hwang JCM, Dierolf V, Bartoli FJ, Mazuir C, Schoenfeld WV (2011) Al nanogrid electrode for ultraviolet detectors. Opt Lett 36:3663

    Article  CAS  Google Scholar 

  29. Lin ME, Ma Z, Huang FY, Fan ZF, Allen LH, Mokoc H (1994) Low resistance ohmic contacts on wide bandgap GaN. Appl Phys Lett 64:1003

    Article  CAS  Google Scholar 

  30. Ruvimov S, Liliental-Weber Z, Washburn J (1996) Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for nGaN. Appl Phys Lett 69:1556

    Article  CAS  Google Scholar 

  31. Liu K, Sakurai M, Aono M (2010) ZnO-based ultraviolet photodetectors. Sensors 10:8604

    Article  CAS  Google Scholar 

  32. Palik ED (1985) Handbook of optical constants of solids, vol 1. Academic, New York

    Google Scholar 

  33. Yashikawa H, Adachi S (1997) Optical constants of ZnO. Jap J Appl Phys 36:6237

    Article  Google Scholar 

  34. Gan Q, Hu H, Xu H, Liu K, Jiang S, Cartwright A (2011) Wavelength-independent optical polarizer based on metallic nanowire arrays. IEEE Photonic J 3:1083

    Article  Google Scholar 

  35. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729

    Article  Google Scholar 

  36. Prade B, Vinet JY, Mysyrowicz A (1991) Guided optical waves in planar heterostructures with negative dielectric constant. Phys Rev B 44:13556

    Article  Google Scholar 

  37. Sturman B, Podivilov E, Gorkunov M (2007) Eigenmodes for metal-dielectric light-transmitting nanostructures. Phys Rev B 76:125104

    Article  Google Scholar 

  38. de Leon-Perez F, Brucoli G, Garcia-Vidal FJ, Martin-Moreno L (2008) Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film. New J Phys 10:105017

    Article  Google Scholar 

  39. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  40. Hessel A, Oliner AA (1964) A new theory of Wood’s anomalies on optical gratings. Appl Optics 10:1275

    Google Scholar 

  41. Zhang J, Bai W, Cai L, Chen X, Song G, Gan Q (2011) Omnidirectional absorption enhancement in hybrid waveguide-plasmon system. Appl Phys Lett 98:261101

    Article  Google Scholar 

  42. Kang M, Kim M, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20:4408

    Article  CAS  Google Scholar 

  43. Li D, Sun X, Song H, Li Z, Chen Y, Jiang H, Miao G (2012) Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv Mater 24:845

    Article  CAS  Google Scholar 

  44. Khan A, Shatalov M, Maruska HP, Wang HM, Kuokstis E (2005) III-nitride UV devices. Jap J Appl Phys 44:7191

    Article  CAS  Google Scholar 

  45. Khan A, Balakrishnan K, Katona T (2008) Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics 2:77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Hu and Q. Gan are supported by NSF (Award # ECCS 1128086). S. Jiang is supported by NSFC (Award # 51001029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoqiang Gan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Zeng, X., Tong, C. et al. Polarization-Insensitive Metal–Semiconductor–Metal Nanoplasmonic Structures for Ultrafast Ultraviolet Detectors. Plasmonics 8, 239–247 (2013). https://doi.org/10.1007/s11468-012-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9381-1

Keywords

Navigation