Skip to main content
Log in

Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Efficient all-optical molecule-plasmon modulation is experimentally demonstrated by employing a compact T-shape single slit on a metal film coated with an azopolymer film, in which the azobenzene molecules can be reoriented by a pump beam. In the T-shape single slit, the transmission spectra exhibit periodic behaviors and are quite sensitive to variations of the refractive index of the azopolymer in the groove. Under a pump beam, the azobenzene molecules are reoriented, so the SPPs in the groove feel a refractive index quite different from that of the originally isotropic azopolymer with randomly orientations. This leads to a high modulation depth of about 53 % (3.3 dB) and a phase variation of >π experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  3. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91

    Article  CAS  Google Scholar 

  4. MacDonald KF, Zheludev NI (2010) Active plasmonics: current status. Laser Photonics Rev 4:562–567

    Article  CAS  Google Scholar 

  5. Chen JJ, Li Z, Yue S, Gong QH (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97:041113

    Article  Google Scholar 

  6. Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835

    Article  CAS  Google Scholar 

  7. Gosciniak J, Bozhevolnyi SI, Andersen TB, Volkov VS, Kjelstrup-Hansen J, Markey L, Dereux A (2010) Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt Express 18:1207–1216

    Article  CAS  Google Scholar 

  8. Chen JJ, Li Z, Yue S, Gong QH (2011) Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field. J Appl Phys 109:073102

    Article  Google Scholar 

  9. Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8:4048–4052

    Article  CAS  Google Scholar 

  10. Dickson W, Wurtz GA, Evans PR, Pollard RJ, Zayats AV (2008) Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 8:281–286

    Article  CAS  Google Scholar 

  11. Cai WS, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9:4403–4411

    Article  CAS  Google Scholar 

  12. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-oxide-si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  CAS  Google Scholar 

  13. Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin JM, Thomay T, Leitenstorfer A, Bratschitsch R (2010) Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat Photon 4:107–111

    Article  CAS  Google Scholar 

  14. Clavero C, Yang K, Skuza JR, Lukaszew RA (2010) Magnetic-field modulation of surface plasmon polaritons on gratings. Opt Lett 35:1557–1559

    Article  CAS  Google Scholar 

  15. Sasaki K, Nagamura T (1998) Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye. J Appl Phys 83(6):2894–2900

    Article  CAS  Google Scholar 

  16. Krasavin AV, MacDonald KF, Zheludev NI, Zayats AV (2004) High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl Phys Lett 85:3369–3371

    Article  CAS  Google Scholar 

  17. MacDonald KF, Krasavin AV, Zheludev NI (2007) Optical modulation of surface plasmon-polariton coupling in a gallium/aluminium composite. Opt Commun 278:207–210

    Article  CAS  Google Scholar 

  18. Samson ZL, Yen SC, MacDonald KF, Knight K, Li SF, Hewak DW, Tsai DP, Zheludev NI (2010) Chalcogenide glasses in active plasmonics. Phys Stat Sol RRL 4:274–276

    Article  CAS  Google Scholar 

  19. Rotenberg N, Betz M, van Driel HM (2008) Ultrafast control of grating-assisted light coupling to surface plasmons. Opt Lett 33:2137–2139

    Article  Google Scholar 

  20. Zhang XP, Sun BQ, Hodgkiss JM, Friend RH (2008) Ultrafast optical switching via waveguided gold nanowires. Adv Mater 20:4455–4459

    Article  CAS  Google Scholar 

  21. Caspers JN, Rotenberg N, van Driel HM (2010) Ultrafast silicon-based active plasmonics at telecom wavelengths. Opt Express 18:19761–19769

    Article  CAS  Google Scholar 

  22. Dintinger J, Robel I, Kamat PV, Genet C, Ebbesen TW (2006) Terahertz all-optical molecule-plasmon modulation. Adv Mater 18:1645–1648

    Article  CAS  Google Scholar 

  23. Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97(5):057402

    Article  CAS  Google Scholar 

  24. Kirakosyan AS, Tong M, Shahbazyan TV, Vardeny ZV (2008) Ultrafast dynamics of surface electromagnetic waves in nanohole array on metallic film. Appl Phys B 93:131–138

    Article  CAS  Google Scholar 

  25. Chen JJ, Li Z, Yue S, Gong QH (2011) Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett 11:2933–2937

    Article  CAS  Google Scholar 

  26. MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photon 3:55–58

    Article  CAS  Google Scholar 

  27. Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photon 1:402–406

    Article  CAS  Google Scholar 

  28. Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8:1506–1510

    Article  CAS  Google Scholar 

  29. Samson ZL, MacDonald KF, Zheludev NI (2009) Femtosecond active plasmonics: ultrafast control of surface plasmon propagation. J Opt A Pure Appl Opt 11:114031

    Article  Google Scholar 

  30. Chen JJ, Li Z, Lei M, Yue S, Xiao JH, Gong QH (2011) Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit. Opt Express 19(27):26463–26469

    Article  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B Solid State 6:4370–4379

    Article  CAS  Google Scholar 

  32. Zhang L, Shi J, Yang Z, Huang MM, Chen ZJ, Gong QH, Cao SK (2008) Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores. Polymer 49:2107–2114

    Article  CAS  Google Scholar 

  33. Oliveira ON Jr, dos Santos Jr DS, Balogh DT, Zucolotto V, Mendonca CR (2005) Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Adv Colloid Interf Sci 116:179–192

    Article  CAS  Google Scholar 

  34. Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100:1817–1845

    Article  CAS  Google Scholar 

  35. Fernández R, Zalakain I, Ramos JA, Galante MJ, Oyanguren PA, Mondragon I (2010) Fabrication of surface-relief gratings on an azobenzene-containing epoxy-based polymer film using atomic force microscopy. Polym Int 59:1422–1427

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (grant nos. 2010CB923200, 2009CB930504, and 2007CB307001) and the National Natural Science Foundation of China (grant nos. 10804004, 10821062, 51172030, and 90921008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Li, Z., Xiao, J. et al. Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit. Plasmonics 8, 233–237 (2013). https://doi.org/10.1007/s11468-012-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9380-2

Keywords

Navigation