Skip to main content

Plasmonic Coupling Effect in Ag Nanocap–Nanohole Pairs for Surface-Enhanced Raman Scattering

Abstract

A plasmonic coupling structure composed of Ag nanocap–nanohole pairs was fabricated through a novel and facile method. Both surface-enhanced Raman scattering (SERS) measurements and numerical simulations show that the cap-hole system produces much larger electric field enhancement and SERS signal than the isolated structures, which is due to the plasmonic coupling effect between the gap of the cap and the hole. Additionally, the plasmonic enhancement is sensitive to the gap size, which can be controlled by the Ag layer thickness during the evaporation process. A maximum enhancement factor of 1.1×108 can be obtained with optimized gap size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  2. Winkler K, Kaminska A, Wojciechowski T, Holyst R, Fialkowski M (2011) Gold micro-flowers: one-step fabrication of efficient, highly reproducible surface-enhanced Raman spectroscopy platform. Plasmonics 6(4):697–704

    Article  CAS  Google Scholar 

  3. Yi M, Zhang D, Wang P, Jiao X, Blair S, Wen X, Fu Q, Lu Y, Ming H (2011) Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics 6(3):515–519

    Article  CAS  Google Scholar 

  4. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6g molecules on large ag nanocrystals. J Am Chem Soc 121(43):9932–9939

    Article  CAS  Google Scholar 

  5. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4:1143–1212

    Article  CAS  Google Scholar 

  6. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  CAS  Google Scholar 

  7. Metiu H, Das P (1984) The electromagnetic theory of surface enhanced spectroscopy. Annu Rev Phys Chem 35(1):507–536

    Article  CAS  Google Scholar 

  8. Ye J, Shioi M, Lodewijks K, Lagae L, Kawamura T, Van Dorpe P (2010) Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl Phys Lett 97(16):1–3

    Article  Google Scholar 

  9. Im H, Bantz KC, Lindquist NC, Haynes CL, Oh SH (2010) Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett 10(6):2231–2236

    Article  CAS  Google Scholar 

  10. Wei H, Håkanson U, Yang Z, Höök F, Xu H (2008) Individual nanometer hole-particle pairs for surface-enhanced Raman scattering. Small 4(9):1296–1300

    Article  CAS  Google Scholar 

  11. Wen X, Yi M, Zhang D, Wang P, Lu Y, Ming H (2011) Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays. Nanotechnology 22:85203–85209

    Article  Google Scholar 

  12. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  CAS  Google Scholar 

  13. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57(6):6281–6284

    Article  Google Scholar 

  14. Love JC, Gates BD, Wolfe DB, Paul KE, Whitesides GM (2002) Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett 2(8):891–894

    Article  CAS  Google Scholar 

  15. Zhang Y, Barhoumi A, Lassiter JB, Halas NJ (2011) Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles. Nano Lett 11(4):1838–1844

    Article  CAS  Google Scholar 

  16. Wei H, Hao F, Huang Y, Wang W, Nordlander P, Xu H (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8(8):2497–2502

    Article  CAS  Google Scholar 

  17. Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9(3):1255–1259

    Article  CAS  Google Scholar 

  18. Palik ED (1998) Handbook of optical constants of solids III. Academic, New York

    Google Scholar 

  19. Moskovits M (2006) Surface-enhanced Raman spectroscopy: a brief perspective. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering: physics and applications. Topics in applied physics, vol 103. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  20. Wu H-Y, Cunningham BT (2011) Plasmonic coupling of sio[sub 2]-ag“post-cap” nanostructures and silver film for surface enhanced Raman scattering. Appl Phys Lett 98(15):153103–153105

    Article  Google Scholar 

  21. Yamaguchi K, Inoue T, Fujii M, Haraguchi M, Okamoto T, Fukui M, Seki SHU, Tagawa S (2007) Electric field enhancement of nano gap of silver prisms. Chin Phys Lett 24(10):2934–2937

    Article  Google Scholar 

  22. Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14(21):9971–9981

    Article  Google Scholar 

  23. Zhu W, Banaee MG, Wang D, Chu Y, Crozier KB (2011) Lithographically fabricated optical antennas with gaps well below 10 nm. Small 7(13):1761–1766

    Article  CAS  Google Scholar 

  24. Van Duyne RP, Hulteen JC, Treichel DA (1993) Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys 99(3):2101–2115

    Article  Google Scholar 

  25. lIN WC, Huang SH, Chen CL, Chen CC, Tsai DP, Chiang HP (2010) Controlling sers intensity by tuning the size and height of a silver nanoparticle array. Appl Phys A Mater Sci Process 101:185–189

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program (973 Program) of China under grant no. 2012CB921900, the Key Program of National Natural Science Foundation of China, no. 61036005, and National Natural Science Foundation of China, nos. 11074241, 11004182. Xiaojin Jiao and Steve Blair acknowledge support from the University of Utah MRSEC, NSF grant no. DMR 1121252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wen, X., Xi, Z., Jiao, X. et al. Plasmonic Coupling Effect in Ag Nanocap–Nanohole Pairs for Surface-Enhanced Raman Scattering. Plasmonics 8, 225–231 (2013). https://doi.org/10.1007/s11468-012-9379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9379-8

Keywords

  • Plasmonic interaction
  • Surface-enhanced Raman scattering (SERS)
  • Hot spot
  • Nanoscale gap