Skip to main content
Log in

Speckled SiO2@Au Core–Shell Particles as Surface Enhanced Raman Scattering Probes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silica particles of ~800 nm size were functionalized using 3-amino propyl triethoxysilane molecules on which gold particles (~20 nm size) were deposited. The resulting particles appeared to form speckled SiO2@Au core–shell particles. The surface roughness, along with hot spots, due to nanogaps between the gold nanoparticles was responsible for the enhancement of the Raman signal of crystal violet molecules by ~3.2 × 107 and by ~1.42 × 108 of single-wall carbon nanotubes. It has also been observed that the electromagnetic excitation near surface plasmon resonance (SPR) of core–shell particles is more effective than off resonance SPR excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moskovits M, Suh JS (1984) Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. Phys Chem 88:5526

    Article  CAS  Google Scholar 

  2. Fleichmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys \Lett 26:163

    Article  Google Scholar 

  3. Albrecht MG, Creighton JA (1997) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem So 99:5215

    Article  Google Scholar 

  4. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606

    Article  CAS  Google Scholar 

  5. Sylvia JM, Janni JA, Klein JD, Spencer KM (2002) Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal Chem 72:5834

    Article  Google Scholar 

  6. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275:1102

    Article  CAS  Google Scholar 

  7. Haran G (2010) Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields. Acc Chem Res 43:1135

    Article  CAS  Google Scholar 

  8. Zayak AT, Hu YS, Choo H, Bokor J, Cabrini S, Schuck PJ, Neaton JB (2011) Chemical Raman enhancement of organic adsorbates on metal surfaces. Phys Rev Lett 106:083003

    Article  CAS  Google Scholar 

  9. Le Ru EC, Grand J, Sow I, Somerville WRC, Etchegoin PG, Delapierre MT, Charron G, Félidj N, Lévi G, Aubard JA (2011) A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett 11:5013

    Article  Google Scholar 

  10. Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106:8096

    Article  CAS  Google Scholar 

  11. Otto AI, Mrozek AI, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Cond Matter 4:1143

    Article  CAS  Google Scholar 

  12. Cañamares MV, Chenal C, Birke RL, Lombardi JR (2008) SERS and single molecule SERS of crystal violet. J Phys Chem C 112:20295

    Article  Google Scholar 

  13. Sharrabi Y, Shegai T, Haran G (2005) Two-state analysis of single-molecule Raman spectra of crystal violet. Chem Phys 318:44

    Article  Google Scholar 

  14. Mondal M, Kundu S, Ghosh SK, Jana NR, Panigrahi M, Pal T (2004) Sniffing a single molecule through SERS using Au core–Ag shell bimetallic nanoparticles. Curr Sci 86:556

    Google Scholar 

  15. Kudelski A (2005) Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites? Chem Phys Lett 414:271

    Article  CAS  Google Scholar 

  16. Gao B, Zhang Y, Zhang J, Kong J, Liu Z (2008) Systematic comparison of the Raman spectra of metallic and semiconducting SWNTs. J Phys Chem C 112:8319

    Article  CAS  Google Scholar 

  17. Keszler AM, Nemes L, Ahmada SR, Fang X (2004) Characterization of carbon nanotube materials by Raman spectroscopy and microscopy—a case study of multiwalled and single walled samples. J Opto Adv Mater 6:1269

    CAS  Google Scholar 

  18. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett 10:751

    Article  CAS  Google Scholar 

  19. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Coll Int Sci 26:62

    Article  Google Scholar 

  20. Kim J-H, Bryan WW, Lee TR (2008) Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir 24:11147

    Article  CAS  Google Scholar 

  21. Niu Z, Fang Y (2006) Effects of synthesis time for synthesizing single-walled carbon nanotubes over Mo-Fe-MgO catalyst and suggested growth mechanism. J Cryst Growth 297:228

    Article  CAS  Google Scholar 

  22. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131

    Article  CAS  Google Scholar 

  23. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Nanoscale probing of adsorbed species by tip enhanced Raman spectroscopy. Phys Rev Lett 92:096101

    Article  Google Scholar 

  24. Kumar GPV (2009) Surface enhanced Raman scattering studies of carbon nanotubes using Ag core Au shell nanoparticles. J Raman Spectrosc 40:2069

    Article  CAS  Google Scholar 

  25. Singh P, Thuy NTB, Aoki Y, Mott D, Maenosono S (2011) Intensification of surface enhanced Raman scattering of thiol containing molecules using Ag@Au core@shell nanoparticles. J Appl Phys 109:094301

    Article  Google Scholar 

  26. Wang W, Li Z, Gu B, Zhang Z, Xu H (2009) Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface enhanced Raman scattering. ACS Nano 3:3493

    Article  CAS  Google Scholar 

  27. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392

    Article  CAS  Google Scholar 

  28. Oldenberg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111:4729

    Article  Google Scholar 

  29. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83

    Article  CAS  Google Scholar 

  30. Bardhan R, Mukherjee S, Martin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378

    Article  CAS  Google Scholar 

  31. Halas NJ (2005) Playing with plasmons: tuning the optical properties of metal nanoshells. MRS Bull 30:362

    Article  CAS  Google Scholar 

  32. Wang P, Fang Y (2008) The surface enhanced Raman spectroscopic study of the adsorption of C70 on the gold nanoparticles. J Chem Phys 129:134702

    Article  Google Scholar 

  33. Tiwari N, Liu MY, Kulkarni SK, Fang Y (2011) Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. J Nano Photonics 5:053513

    Google Scholar 

  34. Zhu ZH et al (2000) ACTA Physico-Chim Sin 16:138

    CAS  Google Scholar 

Download references

Acknowledgments

PK, ST, and PL thank Capital Normal University, Beijing, China, for the travel support. SK would like to thank UGC and DST India, project no. SR/NM/NS-42/2009, for the support. This research was supported by the Foundation of the Beijing Key Laboratory and the National Natural Science Foundation of China (grant no. 21073124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khurana, P., Thatai, S., Wang, P. et al. Speckled SiO2@Au Core–Shell Particles as Surface Enhanced Raman Scattering Probes. Plasmonics 8, 185–191 (2013). https://doi.org/10.1007/s11468-012-9374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9374-0

Keywords

Navigation