, Volume 7, Issue 4, pp 633–639 | Cite as

Optimized Electroless Silver Coating for Optical and Plasmonic Applications

  • Alessandro Antonello
  • Baohua Jia
  • Zhengguang He
  • Dario Buso
  • Giovanni Perotto
  • Laura Brigo
  • Giovanna Brusatin
  • Massimo Guglielmi
  • Min Gu
  • Alessandro MartucciEmail author


Electroless metal deposition is a simple and convenient technique to fabricate metallic films and to provide isotropic metal functionalization of 3D structures with complex geometries. In this work, we describe the synthesis of silver coatings by means of a modified Tollens reaction and their use as optical coating. The chemical composition of the metallization bath is here addressed to optimize the metal coating deposition. The synthesis parameters have been tailored in order to deposit very smooth films which were characterized by scanning electron microscopy, atomic force microscopy, and optical spectroscopy. 2D diffraction gratings and sinusoidal plasmonic gratings were produced with the proposed method. Optical characterization confirmed the plasmonic activities of the resultant structures, proving the efficiency of the described method for optical applications. Thermal annealing was found to improve the surface roughness of the coating and therefore the optical properties of the plasmonic gratings.


Silver coating Electroless Plasmonic Grating 



This work has been supported trough Progetto Strategico PLATFORMS of Padova University and 7FP EU Project—ORION #222517. Alessandro Martucci thanks Swinburne University visiting professor program. Min Gu acknowledges the support from the Australian Research Council (ARC) under the Centres of Excellence program and the Laureate Fellowship scheme (FL100100099). Baohua Jia thanks the ARC for the support through the APD grant DP0987006.


  1. 1.
    Yun-Sheng C, Tal A, Kuebler SM (2007) Chem Mater 19:3858CrossRefGoogle Scholar
  2. 2.
    Malureanu R, Zalkovskij M, Andryieuski A, Lavrinenko AV (2010) J Electrochem Soc 12:157Google Scholar
  3. 3.
    Henry AC, McCarley RL (2001) J Phys Chem B 105:8755CrossRefGoogle Scholar
  4. 4.
    Koo HC, Kim SY, Cho SK, Kim JJ (2008) J Electrochem Soc 9:155Google Scholar
  5. 5.
    Buckley F, Hope G (2006) IEEE Proc. Int. Conf. Nanoscience and Nanotechnology 528Google Scholar
  6. 6.
    Brejna PR, Griffiths PR (2010) Appl Spectrosc 64:493CrossRefGoogle Scholar
  7. 7.
    Wul D, Zhang T, Wang WC, Zhang L, Jin R (2008) Polym Adv Technol 19:335–341CrossRefGoogle Scholar
  8. 8.
    Kaneko K, Yamamoto K, Kawata S, Xia H, Song JF, Sun HB (2008) Opt Lett 33:1999CrossRefGoogle Scholar
  9. 9.
    Zhang J, Zhan P, Liu H, Wang Z, Ming N (2006) Mater Lett 60:280CrossRefGoogle Scholar
  10. 10.
    Tian C, Wang E, Kang Z, Mao B, Zhang C, Lan Y, Wang C, Song Y (2006) J Solid State Chem 179:3270CrossRefGoogle Scholar
  11. 11.
    Barsegova I, Lewis A, Khatchatouriants A, Manevitch A, Sukenik C (2002) Appl Phys Lett 81:2461CrossRefGoogle Scholar
  12. 12.
    Malvadkar NA, Demirel G, Poss M, Javed A, Dressick WJ, Demirel MC (2010) J Phys Chem C 114:10730CrossRefGoogle Scholar
  13. 13.
    Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stephan O (2010) Langmuir 26:8729CrossRefGoogle Scholar
  14. 14.
    Yin Y, Li ZY, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) J Mater Chem 12:522CrossRefGoogle Scholar
  15. 15.
    Qi H, Alexson D, Glembocki O, Prokes SM (2010) Nanotechnology 21:085705CrossRefGoogle Scholar
  16. 16.
    Schaefers S, Rast L, Stanishevsky A (2006) Mater Lett 60:706CrossRefGoogle Scholar
  17. 17.
    Textor T, Fouda MMG, Mahltig B (2010) Appl Surf Sci 256:2337CrossRefGoogle Scholar
  18. 18.
    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Appl Phys Lett 88:083110CrossRefGoogle Scholar
  19. 19.
    Chen Y-S, Tal A, Torrance DB, Kuebler SM (2006) Adv Funct Mater 16:1739CrossRefGoogle Scholar
  20. 20.
    Li J, Hossain M, Jia B, Buso D, Gu M (2010) Opt Express 18:4491CrossRefGoogle Scholar
  21. 21.
    Jia B, Li J, Gu M (2007) Aust J Chem 60:484CrossRefGoogle Scholar
  22. 22.
    Da Silva A, Andraud C, Lafait J, Dakka AJ (2000) Phys Cond Matter 12:4125CrossRefGoogle Scholar
  23. 23.
    de Vries AJ, Kooij ES, Wormeester H, Mewe AA, Poelsema B (2007) J Appl Phys 101:053703CrossRefGoogle Scholar
  24. 24.
    Romanato F, Hong Lk, Kang HK, Wong CC, Yun Z, Knoll W (2008) Phys Rev B 77:245435CrossRefGoogle Scholar
  25. 25.
    Palik ED (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alessandro Antonello
    • 1
  • Baohua Jia
    • 2
  • Zhengguang He
    • 2
  • Dario Buso
    • 2
  • Giovanni Perotto
    • 3
  • Laura Brigo
    • 4
  • Giovanna Brusatin
    • 4
  • Massimo Guglielmi
    • 4
  • Min Gu
    • 2
  • Alessandro Martucci
    • 1
    Email author
  1. 1.IOM-CNR, INSTM and Dipartimento di Ingegneria Meccanica Settore MaterialiUniversità di PadovaPaduaItaly
  2. 2.Centre for Micro-Photonics and CUDOS, Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyHawthornAustralia
  3. 3.Dipartimento di FisicaUniversità di PadovaPaduaItaly
  4. 4.INSTM and Dipartimento di Ingegneria Meccanica Settore MaterialiUniversità di PadovaPaduaItaly

Personalised recommendations