Skip to main content
Log in

Intrinsic Quantum Beats of Atomic Populations and Their Nanoscale Realization Through Resonant Plasmonic Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the coherently trapped populations of a four-level atom, we demonstrated the quantum beats with different mechanism, which originate from the interference between transition channels with different dipole moments. The beat frequency is determined by the intrinsic atomic parameters, i.e., the spacing of upper levels and ratio of dipole moments. The resonant plasmonic nanoantenna, as a candidate for the creation of anisotropic vacuum, was proposed to achieve the nanoscale realization of the quantum beats, spontaneous emission cancellation, and Rabi oscillation in two-photon correlations through the enhanced near-field and modified decay rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu S, Scully MO (1996) Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys Rev Lett 76:388–341

    Google Scholar 

  2. Lee H, Polynkin P, Scully MO, Zhu SY (1997) Quenching of spontaneous emission via quantum interference. Phys Rev A 55:4454–4465

    Article  CAS  Google Scholar 

  3. Paspalakis E, Knight PL (1998) Phase control of spontaneous emission. Phys Rev Lett 81:293–296

    Article  CAS  Google Scholar 

  4. Paspalakis E, Kylstra NJ, Knight PL (1999) Transparency induced via decay interference. Phys Rev Lett 82:2079–2082

    Article  CAS  Google Scholar 

  5. Zhou P, Swain S (1999) Phase-dependent spectra in a driven two-level atom. Phys Rev Lett 82:2500–2503

    Article  CAS  Google Scholar 

  6. Agarwal GS (2000) Anisotropic vacuum-induced interference in decay channels. Phys Rev Lett 84:5500–5503

    Article  CAS  Google Scholar 

  7. Zhu SY, Chen H, Huang H (1997) Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure. Phys Rev Lett 79:205–208

    Article  CAS  Google Scholar 

  8. Quang T, Woldeyohannes M, John S, Agarwal GS (1997) Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device. Phys Rev Lett 79:5238–5241

    Article  CAS  Google Scholar 

  9. Yang Y, Xu J, Chen H, Zhu SY (2008) Quantum interference enhancement with left-handed materials. Phys Rev Lett 100:043601

    Article  Google Scholar 

  10. Yannopapas V, Paspalakis E, Vitanov NV (2009) Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys Rev Lett 103:063602

    Article  Google Scholar 

  11. Brongersma ML, Shalaev VM (2010) Applied physics. The case for plasmonics. Science 328:440–441

    Article  CAS  Google Scholar 

  12. Chang DE, Sorensen AS, Hemmer PR, Lukin MD (2006) Quantum optics with surface plasmons. Phys Rev Lett 97:053002

    Article  CAS  Google Scholar 

  13. Ozel T et al (2008) Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New J Phys 10:083035

    Article  Google Scholar 

  14. Gu Y, Huang L, Martin OJF, Gong QH (2010) Resonance fluorescence of single molecules assisted by a plasmonic structure. Phys Rev B 81:193103

    Article  Google Scholar 

  15. Marty R, Arbouet A, Paillard V, Girard C, ColasdesFrancs G (2010) Photon antibunching in the optical near field. Phys Rev B 82:081403(R)

    Article  Google Scholar 

  16. Hendrickson SM, Lai MM, Pittman TB, Franson JD (2010) Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor. Phys Rev Lett 105:173602

    Article  CAS  Google Scholar 

  17. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  18. Lange W, Mlynek J (1978) Quantum beats in transmission by time-resolved polarization spectroscopy. Phys Rev Lett 40:1373–1376

    Article  CAS  Google Scholar 

  19. Mühlschlegel P et al (2005) Resonant optical antennas. Science 308:1607–1609

    Article  Google Scholar 

  20. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Google Scholar 

  21. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Google Scholar 

  22. Barnett SM et al (1996) Decay of excited atoms in absorbing dielectrics. J Phys B 29:3763–3781

    Article  CAS  Google Scholar 

  23. Li G, Li F, Zhu SY (2001) Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium. Phys Rev A 64:013819

    Article  Google Scholar 

  24. Gu Y et al (2008) Resonance capacity of surface plasmon on subwavelength metallic structures. EPL 83:27004

    Article  Google Scholar 

  25. Martin OJF, Girard C, Dereux A (1995) Generalized field propagator for electromagnetic scattering and light confinement. Phys Rev Lett 74:526–529

    Article  CAS  Google Scholar 

  26. Dulkeith E et al (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  27. Ye J, Vernooy DM, Kimble HJ (1999) Trapping of single atoms in cavity QED. Phys Rev Lett 83:4987–4990

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 10874004 and 10821062 and the National Key Basic Research Program under Grant No. 2007CB307001. We would like to thank Professors Xiaoyong Hu, Gaoxiang Li, and Jie Zhang for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Wang, L., Ren, P. et al. Intrinsic Quantum Beats of Atomic Populations and Their Nanoscale Realization Through Resonant Plasmonic Antenna. Plasmonics 7, 33–38 (2012). https://doi.org/10.1007/s11468-011-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9272-x

Keywords

Navigation