, 6:785 | Cite as

Polarization-Dependent Surface-Enhanced Raman Scattering via Aligned Gold Nanorods in Poly(Vinyl Alcohol) Film

  • Jun Tao
  • Yonghua LuEmail author
  • Junxue Chen
  • Dawei Lu
  • Chunchong Chen
  • Pei Wang
  • Hai MingEmail author


A low-cost and effective surface-enhanced Raman scattering (SERS) substrate consisting of aligned gold nanorods is obtained by stretching the poly(vinyl alcohol) nanorods composite film doped with the probe molecule. The SERS intensity of characteristic vibrational band of the probe is observed obviously dependent on the angle (θ) between incident polarization and major axis of nanorod. The relationship between them manifests a cos2 θ dependence. The result is illustrated from both the localized field enhancement and optical antenna effect of gold nanorod. The finite element method calculation is also performed to further confirm the conclusion.


Surface plasmons Particles Polarization Surface-enhanced Raman scattering (SERS) 



This work is supported by the National Basic Research Program of China under grant no. 2011cb301802, the National Science Foundation of China under grant no. 60736037, no. 61036005 and no.11074240. Y.H. Lu is also supported by “the Fundamental Research Funds for the Central Universities.”


  1. 1.
    Kelly KL, Coronado E, Zhao L, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668CrossRefGoogle Scholar
  2. 2.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109CrossRefGoogle Scholar
  3. 3.
    Yan W, Feng X, Chen X, Hou W, Zhu J (2008) A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl@polyaniline hybrid material. Biosens Bioelectron 23:925CrossRefGoogle Scholar
  4. 4.
    Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett 32:1438CrossRefGoogle Scholar
  5. 5.
    Lee PC, Melsel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391CrossRefGoogle Scholar
  6. 6.
    Wei H, Hao F, Huang Y, Wang W, Nordlander P, Xu H (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8:2497CrossRefGoogle Scholar
  7. 7.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157CrossRefGoogle Scholar
  8. 8.
    Aslan K, Holley P, Geddes CD (2006) Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J Mater Chem 16:2846CrossRefGoogle Scholar
  9. 9.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073CrossRefGoogle Scholar
  10. 10.
    Kim F, Kwan S, Akana J, Yang P (2001) Langmuir–Blodgett nanorod assembly. J Am Chem Soc 123:4360CrossRefGoogle Scholar
  11. 11.
    van der Zande BMI, Koper GJM, Lekkerkerker HNW (1999) Alignment of rod-shaped gold particles by electric fields. J Phys Chem B 103:5754CrossRefGoogle Scholar
  12. 12.
    Ming T, Kou X, Chen H, Wang T, Tam H, Cheah K, Chen J, Wang J (2008) Ordered gold nanostructure assemblies formed by droplet evaporation. Angew Chem Int Ed 47:9685CrossRefGoogle Scholar
  13. 13.
    Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán LM (2005) Optical control and pattering of gold-nanorod-poly(vinylalcohol) nanocomposite films. Adv Funct Mater 15:1065CrossRefGoogle Scholar
  14. 14.
    McLellan JM, Li Z, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013CrossRefGoogle Scholar
  15. 15.
    Xu H, Kall M (2003) Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chem Phys Chem 4:1001CrossRefGoogle Scholar
  16. 16.
    Etchegoin PG, Galloway C, Le Ru EC (2006) Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys Chem Chem Phys 8:2624CrossRefGoogle Scholar
  17. 17.
    Brolo AG, Arctander E, Addison CJ (2005) Strong polarized enhanced Raman scattering via optical tunneling through random parallel nanostructures in Au thin films. J Phys Chem B 109:401CrossRefGoogle Scholar
  18. 18.
    Mohanty P, Yoon I, Kang T, Seo K, Varadwaj KSK, Choi W, Park Q, Ahn JP, Suh YD, Ihee H, Kim B (2007) Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering. J Am Chem Soc 129:9576CrossRefGoogle Scholar
  19. 19.
    Tao AR, Yang P (2005) Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires. J Phys Chem B 109:15687CrossRefGoogle Scholar
  20. 20.
    Zhao YP, Chaney SB, Shanmukh S, Dluhy RA (2006) Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B 110:3153CrossRefGoogle Scholar
  21. 21.
    Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414CrossRefGoogle Scholar
  22. 22.
    Hunyadi SE, Murphy CJ (2006) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman Scattering. J Mater Chen 16:3929CrossRefGoogle Scholar
  23. 23.
    Maier SA (2007) Plasmonics: fundamental and applications. Springer, New YorkGoogle Scholar
  24. 24.
    Le Ru EC, Etchegoin PG (2009) Principles of surface enhanced Raman spectroscopy and related plasmonic effect. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Le Ru EC et al (2008) Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects. J Phys Chem C 112:8117CrossRefGoogle Scholar
  26. 26.
    Taminiau TH, Stefani FD, Segerink FB, Van Hulst NF (2008) Optical antennas direct single-molecule emission. Nature Photonics 2:234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations