, 6:779 | Cite as

Broadband Tunable and Double Dipole Surface Plasmon Resonance by TiO2 Core/Ag Shell Nanoparticles

  • Quanshui Li
  • Zhili ZhangEmail author


A design of a TiO2 core and Ag shell spherical nanoparticle is theoretically presented. The nanoparticles display double dipole plasmonic resonance peaks: one located at the ultraviolet range, the other is widely tunable from the visible to the near infrared region. The tunability can be easily controlled by varying the sizes of the core and the shell. The near field patterns of the double plasmonic resonance peaks are analyzed, and the dipole resonance modes for those two peaks are confirmed for the suitable core–shell sizes.


Core–shell nanoparticle Plasmonic Double resonance peaks 


  1. 1.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  2. 2.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  3. 3.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  4. 4.
    Li Q, Zhang Z, Haque SS, Zhang M, Xia L (2010) Localized surface plasmon resonance effects by naturally occurring Chinese yam particles. J App Phys 108:123502CrossRefGoogle Scholar
  5. 5.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefGoogle Scholar
  6. 6.
    Kim SS, Na SI, Jo J, Kim DY, Nah YC (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307CrossRefGoogle Scholar
  7. 7.
    Qu D, Liu F, Yu J, Xie W, Xu Q, Li X, Huang Y (2011) Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:113119CrossRefGoogle Scholar
  8. 8.
    Chakravadhanula VSK, Elbahri M, Schuermann U, Takele H, Greve H, Zaporojtchenko V, Faupel F (2008) Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry. Nanotechnology 19:225302CrossRefGoogle Scholar
  9. 9.
    Ming T, Ping L, Schülzgen A, Peyghambarian N, Deming L (2011) Double-resonance plasmon and polarization effects in a SERS fiber sensor with a grid nanostructure, vol 284. Opt Commun 284:2061–2064CrossRefGoogle Scholar
  10. 10.
    Sung JH, Sukharev M, Hicks EM, Van Duyne RP, Seideman T, Spears KG (2008) Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles. J Phys Chem C 112:3252–3260CrossRefGoogle Scholar
  11. 11.
    Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced raman spectroscopy. J Am Chem Soc 132:10903–10910CrossRefGoogle Scholar
  12. 12.
    Ringe E, McMahon JM, Sohn K, Cobley C, Xia YN, Huang JX, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114:12511–12516CrossRefGoogle Scholar
  13. 13.
    McMahon JA, Wang YM, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C 113:2731–2735CrossRefGoogle Scholar
  14. 14.
    Fofang NT, Park TH, Neumann O, Mirin NA, Nordlander P, Halas NJ (2008) Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-j-aggregate complexes. Nano Lett 8:3481–3487CrossRefGoogle Scholar
  15. 15.
    Ni W, Kou X, Yang Z, Wang JF (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. Acs Nano 2:677–686CrossRefGoogle Scholar
  16. 16.
    Niesen B, Rand BP, Van Dorpe P, Shen HH, Maes B, Genoe J, Heremans P (2010) Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles. Opt Express 18:19032–19038CrossRefGoogle Scholar
  17. 17.
    Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3:543–547CrossRefGoogle Scholar
  18. 18.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  19. 19.
    Sidorov AI (2006) Double plasmon resonance in spherical metal-dielectric-metal nanostructures. Tech Phys 51:477–481CrossRefGoogle Scholar
  20. 20.
    Zharov AA, Zharova NA (2010) Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles. JETP Lett 92:210–213CrossRefGoogle Scholar
  21. 21.
    Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105CrossRefGoogle Scholar
  22. 22.
    Han HF, Fang Y, Li ZP, Xu HX (2008) Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Appl Phys Lett 92:023116CrossRefGoogle Scholar
  23. 23.
    Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220CrossRefGoogle Scholar
  24. 24.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499CrossRefGoogle Scholar
  25. 25.
    Draine BT, Flatau PJ (2010) User guide to the discrete dipole approximation code DDSCAT 7.1. Available from:
  26. 26.
    Palik ED (1998) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  27. 27.
    Palik ED (1985) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  28. 28.
    Felidj N, Aubard J, Levi G (1999) Discrete dipole approximation for ultravioletvisible extinction spectra simulation of silver and gold colloids. J Chem Phys 111:1195–1208CrossRefGoogle Scholar
  29. 29.
    Kim YJ, Johnson RC, Li JG, Hupp JT, Schatz GC (2002) Synthesis, linear extinction, and preliminary resonant hyper-Rayleigh scattering studies of gold-core/silver-shell nanoparticles: comparisons of theory and experiment. Chem Phys Lett 352:421–428CrossRefGoogle Scholar
  30. 30.
    Daimon M, Masumura A (2007) Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Optics 46:3811–3820CrossRefGoogle Scholar
  31. 31.
    McNeil LE, Hanuska AR, French RH (2001) Orientation dependence in near-field scattering from TiO2 particles. Appl Optics 40:3726–3736CrossRefGoogle Scholar
  32. 32.
    Thiele ES, French RH (1998) Computation of light scattering by anisotropic spheres of rutile titania. Adv Mater 10:1271–1276CrossRefGoogle Scholar
  33. 33.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MechanicalAerospace and Biomedical Engineering University of TennesseeKnoxvilleUSA

Personalised recommendations