Advertisement

Plasmonics

, 6:773 | Cite as

Numerical Investigation of a Branch-Shaped Filter Based on Metal-Insulator-Metal Waveguide

  • Zhongyue ZhangEmail author
  • Jiandong Wang
  • Yanan Zhao
  • Dong Lu
  • Zuhong Xiong
Article

Abstract

Using the finite difference time-domain method, we present a comprehensive numerical investigation of a branch-shaped filter based on the metal-insulator-metal (MIM) waveguide. The results show that several passbands and stopbands appear in the transmission spectra, which are resulted by the phase differences between the surface plasmon polaritons (SPPs) propagating along the straight waveguide and the SPPs resonating in the circuit formed by the branch and the straight waveguide. The effects of the structural parameters of the branch-shaped filters on their transmission properties are also studied. These results not only present an alternative plasmonic filter for the MIM waveguides but also help us to understand the transmission properties of the circuit-shaped structures.

Keywords

Surface plasmon polariton Waveguide Filter Finite difference time-domain method 

Notes

Acknowledgements

This work was supported by National Natural Foundation of China (Grant Nos. 11004160, 10904009, and 10974157), the Natural Science Foundation of CQ CSTC (Grant Nos. CSTC2010BB4005 and CSTC2010BA6002), the Fundamental Research Funds for the Central Universities (Grant Nos. XDJK2009C078 and XDJK2009A001), and the Southwest University Research Foundation (Grant No. SWU109024).

References

  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  3. 3.
    Rosenzveig T, Hermannsson PG, Leosson K (2010) Modelling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5:75–77CrossRefGoogle Scholar
  4. 4.
    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas NJ, Xu H (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950–1954CrossRefGoogle Scholar
  5. 5.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  6. 6.
    Fang Z, Qi H, Wang C, Zhu X (2010) Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing. Plasmonics 5:207–212CrossRefGoogle Scholar
  7. 7.
    Wang Y (2003) Wavelength selection with coupled surface plasmon waves. Appl Phys Lett 82:4385–4387CrossRefGoogle Scholar
  8. 8.
    Lei DY, Ong HC (2007) Enhanced forward emission from ZnO via surface plasmons. Appl Phys Lett 91:211107–211109CrossRefGoogle Scholar
  9. 9.
    Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102–131104CrossRefGoogle Scholar
  10. 10.
    Hao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13:10795–10800CrossRefGoogle Scholar
  11. 11.
    Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835CrossRefGoogle Scholar
  12. 12.
    Wang B, Wang GP (2004) Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt Lett 29:1992–1994CrossRefGoogle Scholar
  13. 13.
    Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surface. Appl Phys Lett 87:013107–013109CrossRefGoogle Scholar
  14. 14.
    Lin WH, Wang GP (2007) Metal heterowaveguide superlattices for a plasmonic analogue to electron Bloch oscillations. Appl Phys Lett 91:143121–143123CrossRefGoogle Scholar
  15. 15.
    Hossieni A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14:11318–11323CrossRefGoogle Scholar
  16. 16.
    Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16:413–425CrossRefGoogle Scholar
  17. 17.
    Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102–181104CrossRefGoogle Scholar
  18. 18.
    Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876CrossRefGoogle Scholar
  19. 19.
    Wang T-B, Wen X-W, Yin C-P, Wang H-Z (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101CrossRefGoogle Scholar
  20. 20.
    Yun B, Hu G, Cui Y (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D: Appl Phys 43:385102–385109CrossRefGoogle Scholar
  21. 21.
    Kekatpure RD, Hryciw AC, Barnard ES, Brongersma ML (2009) Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt Express 17:24112–24129CrossRefGoogle Scholar
  22. 22.
    Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46:2229–2233CrossRefGoogle Scholar
  23. 23.
    Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186–5201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhongyue Zhang
    • 1
    Email author
  • Jiandong Wang
    • 2
  • Yanan Zhao
    • 1
  • Dong Lu
    • 1
  • Zuhong Xiong
    • 1
  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China
  2. 2.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations