Advertisement

Plasmonics

, 6:761 | Cite as

Individual Ag Nanowire Dimer for Surface-Enhanced Raman Scattering

  • ChaoLing DuEmail author
  • YuMeng You
  • Tao Chen
  • Yan Zhu
  • HaiLong Hu
  • DaNing Shi
  • HongYu Chen
  • ZeXiang Shen
Article

Abstract

We have investigated the polarization-dependent surface-enhanced Raman scattering (SERS) of an individual Ag nanowire (AgNW) dimer, which contains two parallel closely packed AgNWs with very different lengths. Similar cos2 θ dependence of signal intensities with respect to the polarization angle θ of the incident laser was observed from the dimeric part and the parts of the body as well as the tip of the longer AgNW. The dimeric part was demonstrated to exhibit the strongest SERS effect. The results agree well with our numerical simulations of the electric field distributions using finite element method. The SERS enhancement mechanisms at different parts of the dimer were also discussed which are different in origin.

Keywords

Ag nanowires (AgNWs) Dimer Surface-enhanced Raman scattering (SERS) Electromagnetic (EM) coupling 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 11004103 and 60808026), the NUAA research funding (nos. NS2010186 and NS2010195), China Postdoctoral Science Foundation-funded project (nos. 20100471332 and 20110491420), Natural Science Foundation of Jiangsu Province (no. BK2010499), and Jiangsu Planned Projects for Postdoctoral Research Funds (nos. 0902016C and 1001038C).

References

  1. 1.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Phot 1:641–648CrossRefGoogle Scholar
  2. 2.
    Kang T, Hong S, Choi I, Sung J, Kim Y, Hahn J, Yi Y (2006) Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy. J Am Chem Soc 128:12870–12878CrossRefGoogle Scholar
  3. 3.
    Kneipp J, Kneiff H, Witting B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–2823CrossRefGoogle Scholar
  4. 4.
    Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  5. 5.
    Shao MW, Lu L, Wang H, Wang S, Zhang ML, Ma DD, Lee ST (2008) An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chem Commun 39:2310–2312CrossRefGoogle Scholar
  6. 6.
    Xu HX, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360CrossRefGoogle Scholar
  7. 7.
    Du CL, Yang MX, You YM, Chen T, Chen HY, Shen ZX (2009) Polymer-encapsulated silver nanoparticle monomer and dimer for surface-enhanced Raman scattering. Chem Phys Lett 473:317–320CrossRefGoogle Scholar
  8. 8.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huse TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  9. 9.
    Tong LM, Zhu T, Liu ZF (2008) Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Appl Phys Lett 92:023109CrossRefGoogle Scholar
  10. 10.
    Kneipp J, Li XT, Sherwood M, Panne U, Kneipp H, Stockman MI, Kneipp K (2008) Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Anal Chem 80:4247–4251CrossRefGoogle Scholar
  11. 11.
    Zhao YP, Chaney SB, Shanmukh S, Dluhy RA (2006) Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B 110:3153–3157CrossRefGoogle Scholar
  12. 12.
    Mohanty P, Yoon I, Kang T, Seo K, Varadwaj KSK, Choi W, Park Q, Ahn JP, Suh YD, Ihee H, Kim B (2007) Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering. J Am Chem Soc 129:9576–9577CrossRefGoogle Scholar
  13. 13.
    Yoon I, Kang T, Choi WJ, Kim JB, Yoo YD, Joo SW, Park QH, Ihee H, Kim B (2009) Single nanowire on a film as an efficient SERS-active plat form. J Am Chem Soc 131:758–762CrossRefGoogle Scholar
  14. 14.
    Tao AR, Yang PD (2005) Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowire. J Phys Chem B 109:15687–15690CrossRefGoogle Scholar
  15. 15.
    Jeong DH, Zhang YX, Moskovits M (2004) Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J Phys Chem B 108:12724–12728CrossRefGoogle Scholar
  16. 16.
    Lee SJ, Baik JM, Moskovits M (2008) Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Lett 8:3244–3247CrossRefGoogle Scholar
  17. 17.
    Wei H, Hao F, Huang YZ, Wang WZ, Nordlander P, Xu HX (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8:2497–2502CrossRefGoogle Scholar
  18. 18.
    Kang T, Yoon I, Jeon K, Choi WJ, Lee Y, Seo K, Yoo Y, Park Q, Ihee H, Suh Y, Kim B (2009) Creating well-defined hot spots for surface-enhanced Raman scattering by single-crystalline noble metal nanowire pairs. J Phys Chem C 113:7492–7496CrossRefGoogle Scholar
  19. 19.
    Camargo PHC, Cobley CM, Rycenga M, Xia YN (2009) Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology 20:434020CrossRefGoogle Scholar
  20. 20.
    Fang YR, Wei H, Hao F, Nordlander P, Xu HX (2009) Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett 9:2049–2053CrossRefGoogle Scholar
  21. 21.
    Wang ZH, Liu JW, Chen XY, Wan JX, Qian YT (2005) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J 11:160–163CrossRefGoogle Scholar
  22. 22.
    You YM, Purnawirman HuHL, Kasim J, Yang HP, Du CL, Yu T, Shen ZX (2010) Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip. J Raman Spectrosc 41:1156–1162CrossRefGoogle Scholar
  23. 23.
    Du CL, Kasim J, You YM, Shi DN, Shen ZX (2011) Enhancement of Raman scattering by individual dielectric microspheres. J Raman Spectrosc 42:145–148CrossRefGoogle Scholar
  24. 24.
    Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261–3266CrossRefGoogle Scholar
  25. 25.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4739CrossRefGoogle Scholar
  26. 26.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903CrossRefGoogle Scholar
  27. 27.
    Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft Solution processing. Nano Lett 2:165–168CrossRefGoogle Scholar
  28. 28.
    Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir−blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • ChaoLing Du
    • 1
    Email author
  • YuMeng You
    • 2
  • Tao Chen
    • 3
  • Yan Zhu
    • 1
  • HaiLong Hu
    • 2
  • DaNing Shi
    • 1
  • HongYu Chen
    • 3
  • ZeXiang Shen
    • 2
  1. 1.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations