, 6:745 | Cite as

Optical Transmission Through Multilayered Ultra-Thin Metal Gratings

  • Zhijun SunEmail author
  • Xiaoliu Zuo
  • Jie Li


Optical transmission properties of multilayered ultra-thin metal gratings are numerically studied. The transmission spectrum has a broad stop-band with extremely low transmittance compared to that of a single-layer one for TM polarization. The stop-band is shown to be formed by multiple-interference tunneling and various plasmon resonance processes in ultra-thin-metal and dielectric multilayers. That is on the transmission background of non-apertured metal/dielectric multilayer structures that have low transmission in the long-wavelength range due to destructive multiple-interference tunneling, the transmission is further suppressed in the stop-band by plasmon resonances in the top metal/dielectric layers, e.g., the anti-symmetric bound surface plasmon mode in the ultra-thin metal layer and the gap surface plasmon mode in the metal-sandwiched dielectric layer. High transmission beyond the stop-band is due to coupled gap surface plasmon mode in the entire multilayer structures. Applications of the optical properties of the multilayered ultra-thin metal gratings are suggested for optical filtering (wavelength or polarization selective).


Surface plasmons Grating Ultra-thin metal Optical transmission 



The authors acknowledge the financial support from the Natural Science Foundation of Fujian Province of China (No. 2011J06002) and the program for NCET in China (No. 08-0469).


  1. 1.
    Rodrigo SG, Martín-Moreno L, Nikitin AY, Kats AV, Spevak IS, García-Vidal FJ (2009) Extraordinary optical transmission through hole arrays in optically thin metal films. Opt Lett 34(1):4–6CrossRefGoogle Scholar
  2. 2.
    Spevak IS, Nikitin AY, Bezuglyi EV, Levchenko A, Kats AV (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79(16):161406CrossRefGoogle Scholar
  3. 3.
    Reibold D, Shao F, Erdmann A, Peschel U (2009) Extraordinary low transmission effects for ultra-thin patterned metal films. Optic Express 17(2):544–551CrossRefGoogle Scholar
  4. 4.
    Sun Z, Zuo X, Lin Q (2010) Plasmon-induced nearly null transmission of light through gratings in very thin metal films. Plasmonics 5(1):13–19CrossRefGoogle Scholar
  5. 5.
    Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103(20):203901CrossRefGoogle Scholar
  6. 6.
    Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen NA (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97(7):071116CrossRefGoogle Scholar
  7. 7.
    Xiao S, Mortensen NA (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Opt Lett 36(1):37–39CrossRefGoogle Scholar
  8. 8.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Letters 10(7):2342–2348CrossRefGoogle Scholar
  9. 9.
    Wan R, Liu F, Huang Y (2010) Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Opt Lett 35(2):244–246CrossRefGoogle Scholar
  10. 10.
    Akbari A, Berini P (2009) Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl Phys Lett 95(2):021104CrossRefGoogle Scholar
  11. 11.
    Hao J, Wang J, Liu X, Padila WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104CrossRefGoogle Scholar
  12. 12.
    Sun Z, Zuo X (2011) Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings. Plasmonics 6(1):83–89CrossRefGoogle Scholar
  13. 13.
    Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554CrossRefGoogle Scholar
  14. 14.
    Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186–5201CrossRefGoogle Scholar
  15. 15.
    Stegeman GI, Burke JJ, Hall DG (1983) Surface-polaritonlike waves guided by thin, lossy metal films. Opt Lett 8(7):383–385CrossRefGoogle Scholar
  16. 16.
    Barbara A, Quemerais P, Bustarret E, Lopez-Rios T (2002) Optical transmission through subwavelength metallic gratings. Phys Rev B 66(16):161403CrossRefGoogle Scholar
  17. 17.
    Garcia-Vidal FJ, Martin-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412CrossRefGoogle Scholar
  18. 18.
    Crouse D, Keshavareddy P (2005) Role of optical and surface plasmon modes in enhanced transmission and applications. Optic Express 13(20):7760CrossRefGoogle Scholar
  19. 19.
    Sun Z, Zeng D (2008) Modeling optical transmission spectra of periodic narrow slit arrays in thick metal films and their correlation with those of individual slits. J Mod Opt 55(10):1639–1647CrossRefGoogle Scholar
  20. 20.
    Shen JT, Platzman PM (2004) Properties of a one-dimensional metallophotonic crystal. Phys Rev B 70(3):035101CrossRefGoogle Scholar
  21. 21.
    Chan HB, Market Z, Woo K, Tanner DB (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516CrossRefGoogle Scholar
  22. 22.
    Xiang D, Wang L-L, Zhai X, Wang L, Pan A-L (2011) Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. Opt Commun 284(1):471CrossRefGoogle Scholar
  23. 23.
    Yeh P (2005) Optical waves in layered media. Wiley, New JerseyGoogle Scholar
  24. 24.
    Fan X, Wang GP, Lee JCW, Chan CT (2006) All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys Rev Lett 97(7):073901CrossRefGoogle Scholar
  25. 25.
    Zhou L, Huang C, Wu S, Yin X, Wang Y, Wang Q, Zhu Y (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97(1):011905CrossRefGoogle Scholar
  26. 26.
    Dutta N, Shi SY, Prather DW (2010) Fabrication of large area 3D ‘fishnet’ optical metamaterials structures. Waves Random Complex 20(2):289–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsXiamen UniversityXiamenChina

Personalised recommendations