Skip to main content
Log in

Optical Transmission Through Multilayered Ultra-Thin Metal Gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical transmission properties of multilayered ultra-thin metal gratings are numerically studied. The transmission spectrum has a broad stop-band with extremely low transmittance compared to that of a single-layer one for TM polarization. The stop-band is shown to be formed by multiple-interference tunneling and various plasmon resonance processes in ultra-thin-metal and dielectric multilayers. That is on the transmission background of non-apertured metal/dielectric multilayer structures that have low transmission in the long-wavelength range due to destructive multiple-interference tunneling, the transmission is further suppressed in the stop-band by plasmon resonances in the top metal/dielectric layers, e.g., the anti-symmetric bound surface plasmon mode in the ultra-thin metal layer and the gap surface plasmon mode in the metal-sandwiched dielectric layer. High transmission beyond the stop-band is due to coupled gap surface plasmon mode in the entire multilayer structures. Applications of the optical properties of the multilayered ultra-thin metal gratings are suggested for optical filtering (wavelength or polarization selective).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodrigo SG, Martín-Moreno L, Nikitin AY, Kats AV, Spevak IS, García-Vidal FJ (2009) Extraordinary optical transmission through hole arrays in optically thin metal films. Opt Lett 34(1):4–6

    Article  Google Scholar 

  2. Spevak IS, Nikitin AY, Bezuglyi EV, Levchenko A, Kats AV (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79(16):161406

    Article  Google Scholar 

  3. Reibold D, Shao F, Erdmann A, Peschel U (2009) Extraordinary low transmission effects for ultra-thin patterned metal films. Optic Express 17(2):544–551

    Article  CAS  Google Scholar 

  4. Sun Z, Zuo X, Lin Q (2010) Plasmon-induced nearly null transmission of light through gratings in very thin metal films. Plasmonics 5(1):13–19

    Article  CAS  Google Scholar 

  5. Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103(20):203901

    Article  Google Scholar 

  6. Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen NA (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97(7):071116

    Article  Google Scholar 

  7. Xiao S, Mortensen NA (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Opt Lett 36(1):37–39

    Article  Google Scholar 

  8. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Letters 10(7):2342–2348

    Article  CAS  Google Scholar 

  9. Wan R, Liu F, Huang Y (2010) Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Opt Lett 35(2):244–246

    Article  Google Scholar 

  10. Akbari A, Berini P (2009) Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl Phys Lett 95(2):021104

    Article  Google Scholar 

  11. Hao J, Wang J, Liu X, Padila WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  12. Sun Z, Zuo X (2011) Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings. Plasmonics 6(1):83–89

    Article  CAS  Google Scholar 

  13. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  14. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186–5201

    Article  CAS  Google Scholar 

  15. Stegeman GI, Burke JJ, Hall DG (1983) Surface-polaritonlike waves guided by thin, lossy metal films. Opt Lett 8(7):383–385

    Article  CAS  Google Scholar 

  16. Barbara A, Quemerais P, Bustarret E, Lopez-Rios T (2002) Optical transmission through subwavelength metallic gratings. Phys Rev B 66(16):161403

    Article  Google Scholar 

  17. Garcia-Vidal FJ, Martin-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412

    Article  Google Scholar 

  18. Crouse D, Keshavareddy P (2005) Role of optical and surface plasmon modes in enhanced transmission and applications. Optic Express 13(20):7760

    Article  CAS  Google Scholar 

  19. Sun Z, Zeng D (2008) Modeling optical transmission spectra of periodic narrow slit arrays in thick metal films and their correlation with those of individual slits. J Mod Opt 55(10):1639–1647

    Article  CAS  Google Scholar 

  20. Shen JT, Platzman PM (2004) Properties of a one-dimensional metallophotonic crystal. Phys Rev B 70(3):035101

    Article  Google Scholar 

  21. Chan HB, Market Z, Woo K, Tanner DB (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516

    Article  CAS  Google Scholar 

  22. Xiang D, Wang L-L, Zhai X, Wang L, Pan A-L (2011) Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. Opt Commun 284(1):471

    Article  CAS  Google Scholar 

  23. Yeh P (2005) Optical waves in layered media. Wiley, New Jersey

    Google Scholar 

  24. Fan X, Wang GP, Lee JCW, Chan CT (2006) All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys Rev Lett 97(7):073901

    Article  Google Scholar 

  25. Zhou L, Huang C, Wu S, Yin X, Wang Y, Wang Q, Zhu Y (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97(1):011905

    Article  Google Scholar 

  26. Dutta N, Shi SY, Prather DW (2010) Fabrication of large area 3D ‘fishnet’ optical metamaterials structures. Waves Random Complex 20(2):289–297

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the Natural Science Foundation of Fujian Province of China (No. 2011J06002) and the program for NCET in China (No. 08-0469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Zuo, X. & Li, J. Optical Transmission Through Multilayered Ultra-Thin Metal Gratings. Plasmonics 6, 745–751 (2011). https://doi.org/10.1007/s11468-011-9259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9259-7

Keywords

Navigation