Advertisement

Plasmonics

, 6:735 | Cite as

Quenching of Fluorescence from CdSe/ZnS Nanocrystal QDs Near Copper Nanoparticles in Aqueous Solution

  • Sanchari Chowdhury
  • Venkat R. BhethanabotlaEmail author
  • Rajan Sen
Article

Abstract

Significant quenching of fluorescence from CdSe/ZnS nanocrystal quantum dots (QDs) coated with mercaptoundecanoic ligands has been realized by copper nanoparticles (NPs). (a) Static quenching in the electrostatic association between the CdSe/ZnS QDs and cetyltrimethylammonium bromide-coated Cu NPs and (b) dynamic quenching of the same nanocrystals by polyvinylpyrrolidone-coated Cu NPs were studied. In both cases, the quenching of fluorescence from the CdSe/ZnS nanocrystals is sensitive to nanomolar concentrations of the copper NPs, and the quenching efficiency increases as spectral overlap between the CdSe/ZnS emission and the copper nanoparticle absorption increases. This suggests that the observed quenching is a result of energy transfer processes. These findings open new avenues for the utilization of Cu NPs in energy transfer-based applications.

Keywords

Static quenching Dynamic quenching Stern–Volmer Spectral overlap Energy transfer 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. CMS-409401.

References

  1. 1.
    Nikoobakht B et al (2002) The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochem Photobiol 75:591–597CrossRefGoogle Scholar
  2. 2.
    Malicka J et al (2003) Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles. Anal Biochem 315:160–169CrossRefGoogle Scholar
  3. 3.
    Gueroui Z, Libchaber A (2004) Single-moleule measurements of gold-quenched quantum dots. Phys Rev Lett 93:166108/166101–166108/166104Google Scholar
  4. 4.
    Liu N et al (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor–metal interactions. J Am Chem Soc 128:15362–15363CrossRefGoogle Scholar
  5. 5.
    Tam F et al (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRefGoogle Scholar
  6. 6.
    Chen Y, Munechika K, Plante J-L et al. (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. App Phys Lett 93:053106/053101–053106/053103Google Scholar
  7. 7.
    Chen F-C, Wu J-L, Lee C-L et al. (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305/013301–013305/013303Google Scholar
  8. 8.
    Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194CrossRefGoogle Scholar
  9. 9.
    Cheng PPH et al (2006) Dynamic and static quenching of fluorescence by 1–4 nm diameter gold monolayer-protected clusters. J Phys Chem B 110:4637–4644CrossRefGoogle Scholar
  10. 10.
    Fan C et al (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100:6297–6301CrossRefGoogle Scholar
  11. 11.
    Lakowicz JR et al (2002) Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277CrossRefGoogle Scholar
  12. 12.
    Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24CrossRefGoogle Scholar
  13. 13.
    Aslan K et al (2005) Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing. J Fluoresc 15:37–40CrossRefGoogle Scholar
  14. 14.
    Deng W et al (2009) Enhanced flow cytometry-based bead immunoassays using metal nanostructures. Anal Chem 81(17):7248–7255CrossRefGoogle Scholar
  15. 15.
    Chowdhury S et al (2009) Silver–copper alloy nanoparticles for metal enhanced luminescence. Appl Phys Lett 95(13):131115CrossRefGoogle Scholar
  16. 16.
    Aslan K, Geddes CD (2008) A review of an ultrafast and sensitive bioassay platform technology: microwave-accelerated metal-enhanced fluorescence. Plasmonics 3:89–101CrossRefGoogle Scholar
  17. 17.
    Kato N, Caruso F (2005) Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. J Phys Chem B 109(42):19604–19612CrossRefGoogle Scholar
  18. 18.
    Ao L et al (2006) Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Anal Chem 78(4):1104–1106CrossRefGoogle Scholar
  19. 19.
    Zai-Sheng W et al (2006) Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Biochem 353:22–29CrossRefGoogle Scholar
  20. 20.
    Dubertret B et al (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol 19:365–370CrossRefGoogle Scholar
  21. 21.
    Imahori H, Fukuzumi S (2001) Porphyrin monolayer-modified gold clusters as photoactive materials. Adv Mater 13(15):1197–1199CrossRefGoogle Scholar
  22. 22.
    Dyadyusha L, Yin H, Jaiswal S et al (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203CrossRefGoogle Scholar
  23. 23.
    Li X, Qian J, Jiang L et al. (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94:063111–063111–063113Google Scholar
  24. 24.
    Zhang Y et al (2007) Metal-enhanced fluorescence from copper substrates. Appl Phys Lett 90(17):173116–173113CrossRefGoogle Scholar
  25. 25.
    Aslan K et al (2008) Metal-enhanced fluorescence from nanoparticulate zinc films. J Phys Chem C 112(47):18368–18375Google Scholar
  26. 26.
    Pribik R et al (2008) Metal-enhanced fluorescence from chromium nanodeposits. J Phys Chem C 112(46):17969–17973CrossRefGoogle Scholar
  27. 27.
    Zhang Y et al (2009) Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits. J Phys Chem C 113(36):15811–15816CrossRefGoogle Scholar
  28. 28.
    Zhang Y et al (2010) Metal-enhanced fluorescence from tin nanostructured surfaces. J Appl Phys 107(2):024302–024305CrossRefGoogle Scholar
  29. 29.
    Zhang Y et al (2010) Interactions of fluorophores with iron nanoparticles: metal-enhanced fluorescence. J Phys Chem C 114(17):7575–7581CrossRefGoogle Scholar
  30. 30.
    Jeong S et al (2011) Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir 27(6):3144–3149CrossRefGoogle Scholar
  31. 31.
    Chowdhury S et al (2009) Effect of Ag–Cu Alloy nanoparticle composition on luminescence enhancement/quenching. J Phys Chem C 113(30):13016–13022CrossRefGoogle Scholar
  32. 32.
    Koeppe R et al (2008) Energy transfer from CdSe/ZnS nanocrystals to zinc–phthalocyanine for advanced photon harvesting in organic photovoltaics. Progr Colloid Polym Sci 135:16–20Google Scholar
  33. 33.
    Pinaud F, King D, Moore HP et al (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123CrossRefGoogle Scholar
  34. 34.
    Wu S-H, Chen D-H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169CrossRefGoogle Scholar
  35. 35.
    Wu C, Zeng T (2005) Simple one-step synthesis of uniform disperse copper nanoparticles. Mater Res Soc Symp Proc 879:Z.6.3.1–Z.6.3.6Google Scholar
  36. 36.
    Lisiecki I, Billoudet F, Pilene MP et al (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100(10):4160–4166CrossRefGoogle Scholar
  37. 37.
    Buboltz JT et al (2007) Stern–Volmer modeling of steady-state Förster energy transfer between dilute, freely diffusing membrane-bound fluorophores. J Chem Phys 127:215101CrossRefGoogle Scholar
  38. 38.
    Dulkeith E, Morteani AC, Niedereichholz T et al. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002–203001–203004Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sanchari Chowdhury
    • 1
    • 3
  • Venkat R. Bhethanabotla
    • 1
    Email author
  • Rajan Sen
    • 2
  1. 1.Department of Chemical & Biomedical EngineeringUniversity of South FloridaTampaUSA
  2. 2.Department of Civil & Environmental EngineeringUniversity of South FloridaTampaUSA
  3. 3.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations