, 6:725 | Cite as

Silver Nanoparticle Arrays on a DVD-Derived Template: An easy&cheap SERS Substrate

  • Giuseppe Giallongo
  • Roberto Pilot
  • Christian Durante
  • Gian Andrea Rizzi
  • Raffaella Signorini
  • Renato Bozio
  • Armando Gennaro
  • Gaetano GranozziEmail author


Commercially available digital versatile discs (DVDs) contain a silver-coated spiral distribution of rectangular-shaped grooves (AgDVD): for the first time, they have been used to produce surface-enhanced Raman scattering (SERS) substrates by electrochemical deposition of silver nanoparticles (AgNPs@AgDVD). The overall procedure only requires cheap and widely available materials and can be easily accomplished. Scanning electron microscopy images of AgNPs@AgDVD revealed that small AgNPs (average diameter about 15 nm) are present within the valleys of AgDVD, whereas over the ridges, the AgNPs are bigger, more densely packed and with a dendrite-like morphology somewhere. The SERS properties of these substrates have been studied in terms of the enhancement factor (EF), point-to-point reproducibility and sample-to-sample repeatability. It turned out that high SERS EF and good reproducibility requirements are both fulfilled. As for repeatability, remarkably better results than typical literature values have been achieved. Such an easy&cheap preparation along with efficient SERS properties make DVD-derived SERS substrates very good candidates for the development of convenient and disposable sensing platforms.


Low-cost SERS substrate Ag nanoparticles on DVD Electrodeposition Good EF and reproducibility 



We gratefully acknowledge the assistance of Dr. C. Maccato for the SEM images, Dr. P. Schiavuta (CIVEN) for the AFM measurements and Dr. M. Bersani (University of Padova) for the UV–vis diffuse reflectance measurements. This work has been supported through the Progetto Strategico PLATFORMS (PLAsmonic nano-Textured materials and architectures FOR enhanced Molecular Sensing) of Padova University.


  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163CrossRefGoogle Scholar
  2. 2.
    Graham D, Goodacre R (2008) Chem Soc Rev 37:883CrossRefGoogle Scholar
  3. 3.
    Baker GA, Moore DS (2005) Anal Bioanal Chem 382:1751CrossRefGoogle Scholar
  4. 4.
    Maier S (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  5. 5.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794CrossRefGoogle Scholar
  6. 6.
    Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Chem Soc Rev 37:898CrossRefGoogle Scholar
  7. 7.
    Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP (2006) J Am Chem Soc 128:10304CrossRefGoogle Scholar
  8. 8.
    Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nano Lett 7:3839CrossRefGoogle Scholar
  9. 9.
    Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino FS, Moerner WE (2006) J Chem Phys 124:061101CrossRefGoogle Scholar
  10. 10.
    Alvarez-Puebla R, Cui B, Bravo-Vasquez J-P, Veres T, Fenniri H (2007) J Phys Chem C 111:6720CrossRefGoogle Scholar
  11. 11.
    Brown RJC, Milton MJ (2008) J Raman Spectrosc 39:1313CrossRefGoogle Scholar
  12. 12.
    Erol M, Han Y, Stanley SK, Stafford CM, Du H, Sukhishvili S (2009) J Am Chem Soc 131:7480CrossRefGoogle Scholar
  13. 13.
    Yu HZ (2004) Chem Commun 2633Google Scholar
  14. 14.
    Ramiro-Manzano F, Bonet E, Rodriguez I, Meseguer F (2010) Langmuir 26:4559CrossRefGoogle Scholar
  15. 15.
    Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A (2009) Plasmonics 4:237CrossRefGoogle Scholar
  16. 16.
    Gellini C, Muniz-Miranda M, Innocenti M, Carlà F, Loglio F, Foresti ML, Salvi PR (2008) Phys Chem Chem Phys 10:4555CrossRefGoogle Scholar
  17. 17.
    Isse AA, Gottardello S, Maccato C, Gennaro A (2006) Electrochem Commun 8:1707CrossRefGoogle Scholar
  18. 18.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic, New YorkGoogle Scholar
  19. 19.
    Varsanyi G (1969) Vibrational spectra of benzene derivatives. Academic, New YorkGoogle Scholar
  20. 20.
    Biggs KB, Camden JP, Anker JN, Van Duyne RP (2009) J Phys Chem A 113:4581CrossRefGoogle Scholar
  21. 21.
    Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426CrossRefGoogle Scholar
  22. 22.
    Dimitrov AT, Hadzi Jordanov S, Popov KI, Pavlovic MG, Radmilovic V (1998) J Appl Electrochem 28:791CrossRefGoogle Scholar
  23. 23.
    Popov KI, Zivkovìc PM, Krstìc SB, Nikolìc ND (2009) Electrochem Acta 54:2924CrossRefGoogle Scholar
  24. 24.
    Haataja M, Srolovitz DJ, Bocarslyb AB (2003) J Electrochem Soc 150(10):708CrossRefGoogle Scholar
  25. 25.
    Waterhouse GIN, Bowmaker GA, Metson JB (2002) Surf Interface Anal 33:401CrossRefGoogle Scholar
  26. 26.
    Link S, El-Sayed MA (1999) J Phys Chem B 103:8410CrossRefGoogle Scholar
  27. 27.
    Wooten F (1972) Optical properties of solids. Academic, New YorkGoogle Scholar
  28. 28.
    Henglein A (1993) J Phys Chem 97:5457CrossRefGoogle Scholar
  29. 29.
    Kneipp K, Kneipp H, Itzkan I, Dasariand RR, Feld MS (2002) J Phys: Condens Matter 14:R597CrossRefGoogle Scholar
  30. 30.
    Le Ru EC, Galloway C, Etchegoing PG (2006) Phys Chem Chem Phys 8:3083Google Scholar
  31. 31.
    Dinish US, Yaw FC, Agarwal A, Olivo M (2011) Biosens and Bioelectron 26:1987CrossRefGoogle Scholar
  32. 32.
    Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ (2009) Anal Bioanal Chem 394:1729CrossRefGoogle Scholar
  33. 33.
    Natan MJ (2006) Faraday Discussion 132:321CrossRefGoogle Scholar
  34. 34.
    Le Ru E, Etchegoing P (2009) Principles of surface enhanced Raman spectroscopy and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Norrod KL, Sudnik LM, Rousell D, Rowlen KL (1997) Appl Spectrosc 51:994CrossRefGoogle Scholar
  36. 36.
    Mulvaney SP, He L, Natan MJ, Keating CD (2003) J Raman Spectrosc 34:163CrossRefGoogle Scholar
  37. 37.
    Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP, Dluhy RA (2008) J Phys Chem C 112:895CrossRefGoogle Scholar
  38. 38.
    Oran JM, Hinde RJ, Hatab NA, Retter ST, Sepaniak MJ (2008) J Raman Spectrosc 39:1811CrossRefGoogle Scholar
  39. 39.
    Zhou J, Xu S, Xu W, Zhao B, Ozaki Y (2009) J Raman Spectrosc 40:31CrossRefGoogle Scholar
  40. 40.
    Diebold ED, Mack NH, Doorn SK, Mazur E (2009) Langmuir 25:1790CrossRefGoogle Scholar
  41. 41.
    Jung D, Lee YM, Lee Y, Kim NH, Kim K, Lee JK (2006) J Mater Chem 16:3145CrossRefGoogle Scholar
  42. 42.
    He L, Lin M, Li H, Kim NJ (2010) J Raman Spectrosc 41:739Google Scholar
  43. 43.
    Gartia MR, Xu Z, Behymer E, Nguyen H, Britten JA, Larson C, Miles R, Bora M, Chang ASP, Bond TC, Liu GL (2010) Nanotechnology 21:395701CrossRefGoogle Scholar
  44. 44.
    Canpean V, Astilean S (2009) Lab on a Chip 9:3574CrossRefGoogle Scholar
  45. 45.
    Choi D, Kang T, Cho H, Choi Y, Lee LP (2009) Lab on a Chip 9:239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giuseppe Giallongo
    • 1
  • Roberto Pilot
    • 1
  • Christian Durante
    • 1
  • Gian Andrea Rizzi
    • 1
  • Raffaella Signorini
    • 1
  • Renato Bozio
    • 1
  • Armando Gennaro
    • 1
  • Gaetano Granozzi
    • 1
    Email author
  1. 1.Department of Chemical Sciences and INSTM Research UnitUniversity of PadovaPaduaItaly

Personalised recommendations