Skip to main content
Log in

Low-Cost Fabrication of Pt Thin Films with Controlled Nanostructures and Their Effects on SERS

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We fabricated nanostructured Pt thin films with two different morphologies and studied their effects on the Raman spectrum of rhodamine 6G. The syntheses were achieved by templating mesoporous silica thin films which are characterized by 8-nm-sized pore channels and 3–4-nm-thick walls in two different orientations of the channels. Therefore, the resultant nanostructured Pt thin films are composed of Pt nanorods of 8 nm in diameter vertically standing in one morphology and horizontally lying in the other. The latter produced stronger Raman signals than the former. Simulations based the discrete-dipole approximation on model nanostructures showed that the horizontally lying nanorods produce stronger local electromagnetic field than the vertically standing ones, in agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aroca R (2006) Surface enhanced vibrational spectroscopy. Wiley, New York

    Book  Google Scholar 

  2. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  3. Manimaran M, Jana NR (2007) Detection of protein molecules by surface-enhanced Raman spectroscopy-based immunoassay using 2–5 nm gold nanoparticle lables. Jn Raman Spectrosc 38:1326–1331

    Article  CAS  Google Scholar 

  4. Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. Jn Am Chem Soc 131:849–854

    Article  CAS  Google Scholar 

  5. Sarkar S, Pande S, Jana S, Sinha AK, Pradhan M, Basu M, Saha S, Yusuf SM, Pal T (2009) Room temperature ferromagnetic Ni nanocrystals: an efficient transition metal platform for manifestation of surface-enhanced Raman scattering. Jn Phys Chem C 113:6022–6032

    Article  CAS  Google Scholar 

  6. Roca M, Haes AJ (2008) Silica–void–gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Jn Am Chem Soc 130:14273–14279

    Article  CAS  Google Scholar 

  7. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. Jn Phys Chem C 112:5605–5617

    Article  CAS  Google Scholar 

  8. Chang RK, Furtak TE (1982) Surface enhanced Raman scattering. Plenum, New York

    Google Scholar 

  9. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  10. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Jn Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  11. Leung L-H, Weaver MJ (1987) Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. Jn Am Chem Soc 109:5113–5119

    Article  CAS  Google Scholar 

  12. Park S, Yang P, Corredor P, Weaver MJ (2002) Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. Jn Am Chem Soc 124:2428–2429

    Article  CAS  Google Scholar 

  13. Tian Z-Q, Ren B, Wu D-Y (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  14. Abdelsalam ME, Mahajan S, Bartlett PN, Baumberg JJ, Russell AE (2007) SERS at structured palladium and platinum surfaces. J Am Chem Soc 129:7399–7406

    Article  CAS  Google Scholar 

  15. Ikeda K, Sato J, Fujimoto N, Hayazawa N, Kawata S, Uosaki K (2009) Plasmonic enhancement of Raman scattering on non-SERS-active platinum substrates. J Phys Chem C 113:11816–11821

    Article  CAS  Google Scholar 

  16. Kim K, Kim KL, Lee HB, Shin KS (2010) Surface-enhanced Raman scattering on aggregates of platinum nanoparticles with definite size. J Phys Chem C 114:18679–18685

    Article  CAS  Google Scholar 

  17. Mahima S, Vijayamohana KP (2008) Shape-dependent electrocatalytic activity of platinum nanostructures. J Mater Chem 18:5858–5870

    Article  Google Scholar 

  18. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  19. Guerrini L, Lopez-Tobar E, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2011) New insights on the Aucore/Ptshell nanoparticle structure in the sub-monolayer range: SERS as a surface analyzing tool. Chem Commun 47:3174–3176

    Article  CAS  Google Scholar 

  20. Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugne’-Labarthet F (2008) Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir–Blodgett deposition and electron-beam lithography techniques. Langmuir 24:11313–11321

    Article  CAS  Google Scholar 

  21. Kahl M, Voges E, Kostrewa S, Viets C, Hill W (1998) Periodically structured metallic substrates for SERS. Sensor Actuat B 51:285–291

    Article  Google Scholar 

  22. Gopinath A, Boriskina VS, Premasiri WR, Ziegler L, Reinhard MB, Dal Negro L (2009) Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced raman sensing. Nano Lett 9:3922–3929

    Article  CAS  Google Scholar 

  23. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233

    Article  CAS  Google Scholar 

  24. Mahmoud MA, Tabor CE, El-Sayed MA (2009) Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir–Blodgett technique at different surface pressures. Jn Phys Chem C 113:5493–5501

    Article  CAS  Google Scholar 

  25. Jung HY, Park Y-K, Park S, Kim SK (2007) Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Anal Chim Acta 602:236–243

    Article  CAS  Google Scholar 

  26. Yun S, Oh MK, Kim SK, Park S (2009) Linker-molecule-free gold nanorod films: effect of nanorod size on surface enhanced Raman scattering. Jn Phys Chem C 113:13551–13557

    Article  CAS  Google Scholar 

  27. Oh MK, Yun S, Kim SK, Park S (2009) Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering. Anal Chim Acta 649:111–116

    Article  CAS  Google Scholar 

  28. Lu Y, Amit L (2010) Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution. Nano Lett 10:2197–2201

    Article  CAS  Google Scholar 

  29. Lee K-R, Kwon Y-U (2010) Hard templates for fabrication of nanostructured films. NANO 5:75–87, references therein

    Article  CAS  Google Scholar 

  30. Sauer G, Brehm G, Schneider S, Graener H, Seifert G, Nielsch K, Choi J, Göring P, Gösele U, Miclea P, Wehrspohn RB (2006) Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays. Appl Phys Lett 88:023106

    Article  Google Scholar 

  31. Yao J-L, Tang J, Wu D-Y, Sun D-M, Xue K-H, Ren B, Mao B-W, Tian Z-Q (2002) Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf Sci 514:108–116

    Article  CAS  Google Scholar 

  32. Ruan C, Eres G, Wang W, Zhang Z, Gu B (2007) Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Langmuir 23:5757–5760

    Article  CAS  Google Scholar 

  33. Luo Z, Peng A, Fu H, Ma Y, Yao J, Loo BH (2008) An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering. Jn Mater Chem 18:133–138

    Article  CAS  Google Scholar 

  34. U-H Lee, J-H Yang, H-J Lee, J-Y Park, K-R Lee, Y-U Kwon (2008) Facile and adaptable synthesis method of mesostructured silica thin films. J Mater Chem 18:1881–1888

    Article  Google Scholar 

  35. U-H Lee, Lee JH, D-Y Jung, Y-U Kwon (2006) High density arrays of platinum nanostructures and their hierarchical patterns. Adv Mater 18:2825–2828

    Article  Google Scholar 

  36. Fukuoka A, Araki H, J-i Kimura, Sakamoto Y, Higuchi T, Sugimoto N, Inagaki S, Ichikawa M (2004) Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J Mater Chem 14:752–756

    Article  CAS  Google Scholar 

  37. H-J Lee, U-H Lee, J-Y Park, S-H Yoo, Park S, Y-U Kwon (2009) Platinum films with controlled 3-dimensional nanoscopic morphologies and their effects on surface enhanced Raman scattering. Chem-An Asian Jn 4:1284–1288

    Article  Google Scholar 

  38. Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. Jn Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  39. B. T. Draine, and P. J. Flatau, (2010), User guide to the discrete dipole approximation code DDSCAT 7.1, http://arXiv.org/abs/1002.1505v1.

  40. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Express 15:1182–1190

    Article  Google Scholar 

  41. Rakic AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics 37:5271–5283

    Article  CAS  Google Scholar 

  42. Clavilier J (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, New York

    Google Scholar 

  43. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  44. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944

    Article  CAS  Google Scholar 

  45. Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F 4:999–1014

    Article  CAS  Google Scholar 

  46. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  47. Pinchuk O, Schatz GC (2008) Collective surface plasmon resonance coupling in silver nanoshell arrays. Appl Phys B 93:31–38

    Article  CAS  Google Scholar 

  48. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Jn Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  49. Yu Y-Y, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods—electrochemical synthesis and optical properties. Jn Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  50. Suzuki T, Miyata H, Noma T, Kuroda K (2008) Platinum thin film consisting of well-aligned nanowires and its optical behavior. Jn Phys Chem C 112:1831–1836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NRF-20090081018 (Basic Science Research Program), NRF-2010-0060482 (Mid-career Researcher Program), NRF-2010-0029698 (Priority Research Center Program), NRF-2010-0029699 (Priority Research Center Program), and NRF-2011-0006268 (Basic Science Research Program). We thank KBSI and CCRF for the SEM and Raman data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Uk Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Lee, ES., Kim, S.K. et al. Low-Cost Fabrication of Pt Thin Films with Controlled Nanostructures and Their Effects on SERS. Plasmonics 6, 715–723 (2011). https://doi.org/10.1007/s11468-011-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9255-y

Keywords

Navigation