, 6:689 | Cite as

Flat-Top Reflection Characteristics in Metal-Dielectric-Metal Plasmonic Waveguide Structure Side Coupled with Cascaded Double Cavities

  • Shun Wang
  • Yi Xu
  • Sheng Lan
  • Lijun WuEmail author


Based on a metal-dielectric-metal (MDM) plasmonic waveguide side coupled with a single cavity, we rebuild such resonator system by cascading double side-coupled cavities to obtain flat-top reflection response over a frequency bandwidth. The increased coherent scattering path provides an additional freedom to engineer the complex interference between the cavity modes and the waveguide mode. By decomposing the compound cavity modes into two decoupled resonances, we analyze the conditions to realize flat-top reflection response. The physics behind the flat-top reflection characteristics is found to be originated from the interference interaction between the two cavities through examining the cavity excitations and the reflected power response. Temporal coupled-mode theory and finite difference time domain method are utilized as theoretical and numerical tools which convince each other.


Surface plasmons Cavities Wavelength filtering 



The author acknowledges financial support from the National Basic Research Program of China (grant nos.10774050 and 10974060) and the Project of High-Level Professionals in the Universities of Guangdong Province.


  1. 1.
    Jacob DK, Dunn SC, Moharam MG (2002) Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters. Appl Opt 41:1241–1245CrossRefGoogle Scholar
  2. 2.
    Kawata H, Ogawa T, Yoshimoto N (2004) Multichannel video and IP signal multiplexing system using CWDM technology. J Lightwave Technol 22:1454–1462CrossRefGoogle Scholar
  3. 3.
    Suh W, Fan S (2003) Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics. Opt Lett 28:1763–1765CrossRefGoogle Scholar
  4. 4.
    Suh W, Fan S (2004) All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl Phys Lett 84:4905–4907CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux L, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  6. 6.
    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503CrossRefGoogle Scholar
  7. 7.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822CrossRefGoogle Scholar
  8. 8.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel B, Requicha AG (2003) local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  9. 9.
    Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur JO, Bouazaoui M, Vilcot JP, Al Wahsh H, Zielinski P, Vigneron JP (2004) Simple nanometric plasmon multiplexer. Phys Rev E 69:035601CrossRefGoogle Scholar
  10. 10.
    Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13:6645–6650CrossRefGoogle Scholar
  11. 11.
    Veronis G, Yu ZH, Kocaba SE, Miller DAB, Brongersma ML, Fan S (2009) Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 7:302–308CrossRefGoogle Scholar
  12. 12.
    Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401CrossRefGoogle Scholar
  13. 13.
    Kurokawa Y, Miyazaki HT (2007) Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys Rev B 75:035411CrossRefGoogle Scholar
  14. 14.
    Noual A, Akjouj A, Pennec Y, Gillet JN, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11:103020CrossRefGoogle Scholar
  15. 15.
    Han ZH, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19:91–93CrossRefGoogle Scholar
  16. 16.
    Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107CrossRefGoogle Scholar
  17. 17.
    Hosseini A, Nejati H, Massoud Y (2008) Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt Express 16:1475–1480CrossRefGoogle Scholar
  18. 18.
    Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17:10757–10766CrossRefGoogle Scholar
  19. 19.
    Xu Y, Miroshnichenko AE, Lan S, Guo Q, Wu LJ (2011) Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides. Plasmonics 6(2):337–343 (online first)CrossRefGoogle Scholar
  20. 20.
    Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937CrossRefGoogle Scholar
  21. 21.
    Noual A, Pennec Y, Akjouj A, Djafari-Rouhani B, Dobrzynski L (2009) Nanoscale plasmon waveguide including cavity resonator. J Phys Condens Matter 21:375301CrossRefGoogle Scholar
  22. 22.
    Zhong ZJ, Xu Y, Lan S, Dai QF, Wu LJ (2009) Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media. Opt Express 18:79–86CrossRefGoogle Scholar
  23. 23.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298CrossRefGoogle Scholar
  24. 24.
    Sub W, Wang Z, Fan S (2004) Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. J Quantum Electron 40:1511–1518CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549–7555CrossRefGoogle Scholar
  26. 26.
    Manolatou C, Khan MJ, Fan S, Villeneuve PR, Haus HA (1999) Coupling of modes analysis of resonant channel add–drop filters. J Quantum Electron 35:1322–1331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations