, 6:681 | Cite as

Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide

  • Mengtao SunEmail author
  • Yanxue Hou
  • Zhipeng Li
  • Liwei Liu
  • Hongxing Xu


For the first time, we report remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Remote excitation polarization-dependent surface-enhanced Raman scattering (SERS) spectra indicate a surface photochemical reaction that p-aminothiophenol is converted to p,p′-dimercaptoazobenzene (DMAB) induced by the plasmonic waveguide. Surface plasmon polaritons generated at the end of a silver nanowire can propagate efficiently along the nanowire, and be coupled by nanoparticles near the nanowire as a nanoantenna. Massive electromagnetic enhancement is generated in the nanogap between the nanowire and the nanoparticles. The remote excitation polarization-dependent SERS spectra can be obtained experimentally in the nanogaps; furthermore, the remote excitation polarization-dependent SERS spectra of DMAB reveal the occurrence of this surface catalytic reaction. Theoretical simulations using finite-difference time-domain methods strongly support our experimental results.


Remote excitation Polarization-dependent Surface photochemical reaction Plasmonic waveguide 



This work was supported by the National Natural Science Foundation of China (grant nos. 90923003, 10874234, 20703064, and 10904171). We thank Dr. Steven L. Suib for helpful suggestions.


  1. 1.
    Metiu H, Dos P (1984) Annu Rev Phys Chem 35:507CrossRefGoogle Scholar
  2. 2.
    Moskovits M (1985) Rev Mod Phys 57:783CrossRefGoogle Scholar
  3. 3.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957CrossRefGoogle Scholar
  4. 4.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nature 464:392CrossRefGoogle Scholar
  5. 5.
    Steidtner J, Pettinger B (2008) Phys Rev Lett 100:236101CrossRefGoogle Scholar
  6. 6.
    Mestl G, Srinivasan TKK (1998) Catalysis Reviews, Science and Engineering 40:451CrossRefGoogle Scholar
  7. 7.
    Mestl G (2000) J Mol Catal Chem 158:45CrossRefGoogle Scholar
  8. 8.
    Knozinger H, Mestl G (1999) Top Catal 8:45CrossRefGoogle Scholar
  9. 9.
    Lombardi JR, Birke RL (2008) J Phys Chem C 112:5605CrossRefGoogle Scholar
  10. 10.
    Sun MT, Liu SS, Chen MD, Xu HX (2009) J Raman Spectrosc 40:137CrossRefGoogle Scholar
  11. 11.
    Zhao LL, Jensen L, Schatz GC (2006) J Am Chem Soc 128:2911CrossRefGoogle Scholar
  12. 12.
    Otto A, Mrozek I, Grabhorn H, Akeman W (1992) J Phys Condens Matter 4:1143CrossRefGoogle Scholar
  13. 13.
    Osawa M, Matsuda N, Yoshii K, Uchida I (1994) J Phys Chem 98:12702CrossRefGoogle Scholar
  14. 14.
    Gibson JW, Johnson BR (2006) J Chem Phys 124:064701CrossRefGoogle Scholar
  15. 15.
    Zhou Q, Li XW, Fan Q, Zhang XX, Zheng JW (2006) Angew Chem Int Ed 45:3970CrossRefGoogle Scholar
  16. 16.
    Toderas F, Baia M, Baia L, Astilean S (2007) Nanotechnology 18:255702CrossRefGoogle Scholar
  17. 17.
    Fang YR, Li YZ, Xu HX, Sun MT (2010) Langmuir 26:7737CrossRefGoogle Scholar
  18. 18.
    Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ (2010) J Am Chem Soc 132:9244CrossRefGoogle Scholar
  19. 19.
    Huang Y, Fang Y, Yang Z, Sun MT (2010) J Phys Chem C 114:18263CrossRefGoogle Scholar
  20. 20.
    Canpean V, Iosin M, Astilean S (2010) Chem Phys Lett 500:277CrossRefGoogle Scholar
  21. 21.
    Wu DY, Zhao LB, Liu, XM Huang R, Huang YF, Ren B, Tian ZQ (2011) Chem Comm 47:2520Google Scholar
  22. 22.
    Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Nano Lett 10:1950CrossRefGoogle Scholar
  23. 23.
    Dickson RM, Lyon LA (2000) J Phys Chem B 104:6095CrossRefGoogle Scholar
  24. 24.
    Hutchison JA, Centeno SP, Odaka H, Fukumura H, Hofkens J, Uji-i H (2009) Nano Lett 9:995CrossRefGoogle Scholar
  25. 25.
    Huang Y, Fang Y, Sun MT (2011) J Phys Chem C 115:3558CrossRefGoogle Scholar
  26. 26.
    Sun Y, Xia YN (2002) Adv Mater 14:833CrossRefGoogle Scholar
  27. 27.
    Kunz KS, Luebber RJ (1993) The finite difference time domain method for electromagnetic. CRC, ClevelandGoogle Scholar
  28. 28.
    FDTD solutions, version 7.5; Lumerical Solutions, Inc. Vancounver, British Columbia, Canada, 2009.Google Scholar
  29. 29.
    Palik ED (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mengtao Sun
    • 1
    Email author
  • Yanxue Hou
    • 1
    • 2
  • Zhipeng Li
    • 1
    • 3
  • Liwei Liu
    • 4
  • Hongxing Xu
    • 1
    • 5
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.College of ScienceYanshan UniversityQinhuangdaoChina
  3. 3.Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of PhysicsCapital Normal UniversityBeijingPeople’s Republic of China
  4. 4.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouPeople’s Republic of China
  5. 5.Division of Solid State PhysicsLund UniversityLundSweden

Personalised recommendations