, 6:673 | Cite as

Dual-Band Plasmonic Enhancement of Ag-NS@SiO2 on Gain Medium’s Spontaneous Emission

  • Jiunn-Woei Liaw
  • Chuan-Li Liu
  • Mao-Kuen KuoEmail author


We present a theoretical study on plasmonic enhancement of molecular fluorescence near a nanocomposite, Ag nanoshell (Ag-NS) coated by a gain medium of molecule-doped SiO2 layer. We use an average enhancement factor (AEF), which considers contributions from all possible orientations and locations of molecules in the silica layer to estimate the overall performance of Ag-NS@SiO2 at specific excitation and emission wavelengths. Our results on the AEF reveal that Ag-NS@SiO2 is a dual-band enhancer on the spontaneous emission of the gain medium; one is a narrowband in a shorter wavelength regime (quadrupole mode) and the other is a broadband in a longer wavelength regime (dipole mode). These two bands are tunable by adjusting the core size and the thickness of the Ag shell. Due to this merit, Ag-NS@SiO2 has great potentials to enhance Forster resonance energy transfer between a donor and a corresponding acceptor with large Stokes shifts.


Nanoshell Excitation rate Apparent quantum yield Fluorescence Average enhancement factor Bonding mode Quadrupole mode Dipole mode Forster resonance energy transfer 



The research was supported by the National Science Council, Taiwan, R.O.C. (NSC 97-2221-E-182-012-MY2, 99-2221-E-182-030-MY3, 99-2221-E-002-034).


  1. 1.
    Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRefGoogle Scholar
  2. 2.
    Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752CrossRefGoogle Scholar
  3. 3.
    Zhang J, Fu Y, Jiang F, Lakowicz JR (2006) Dye-labeled silver nanoshell-bright particle. J Phys Chem B 110:8986–8991CrossRefGoogle Scholar
  4. 4.
    Zhang J, Fu Y, Lakowicz JR (2009) Luminescent silica core/silver shell encapsulated with Eu(III) complex. J Phys Chem C 113:19404–19410CrossRefGoogle Scholar
  5. 5.
    Tovmachenko G, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95CrossRefGoogle Scholar
  6. 6.
    Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs. J Fluorescence 17:127–131CrossRefGoogle Scholar
  7. 7.
    Liaw JW, Liu CL, Tu WM, Sun CS, Kuo MK (2010) Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence. Opt Express 18(12):12788–12797CrossRefGoogle Scholar
  8. 8.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402CrossRefGoogle Scholar
  9. 9.
    Stockman MI (2010) The spaser as a nanoscale quantum generator and ultrafast amplifier. J Opt 12:024004CrossRefGoogle Scholar
  10. 10.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1113CrossRefGoogle Scholar
  11. 11.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  12. 12.
    Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16(24):19579–19591CrossRefGoogle Scholar
  13. 13.
    Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383CrossRefGoogle Scholar
  14. 14.
    Xu S, Hartvickson S, Zhao JX (2008) Engineering of SiO2–Au–SiO2 sandwich nanoaggregates using a building block: single, double, and triple cores for enhancement of near infrared fluorescence. Langmuir 24:7492–7499CrossRefGoogle Scholar
  15. 15.
    Miao X, Brener I, Luk TS (2010) Nanocomposite plasmonic fluorescence emitters with core/shell configurations. J Opt Soc Am B 27(8):1561–1570CrossRefGoogle Scholar
  16. 16.
    Jin Y, Gao X (2009) Plasmonic fluorescent quantum dots. Nat Nanotechnol 4:571–576CrossRefGoogle Scholar
  17. 17.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:08907Google Scholar
  18. 18.
    Zhang P, Guo Y (2009) Surface-enhanced Raman scattering inside metal nanoshells. J Am Chem Soc 131:3808–3809CrossRefGoogle Scholar
  19. 19.
    Zhang J, Fu Y, Lakowicz JR (2007) Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by metal nanostructure. J Phys Chem C 111:1955–1961CrossRefGoogle Scholar
  20. 20.
    Xu H (2005) Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field. Phys Rev B 72:073405CrossRefGoogle Scholar
  21. 21.
    Tai CT (1971) Dyadic Green functions in electromagnetic theory. IEEE Press, New YorkGoogle Scholar
  22. 22.
    Chen XW, Choy WCH, He S, Chui PC (2007) Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell. Opt Express 15(11):7083–7094CrossRefGoogle Scholar
  23. 23.
    Liaw JW, Chen CS, Chen JH, Kuo MK (2009) Purcell effect of nanoshell dimer on single molecule’s fluorescence. Opt Express 17(16):13532–13540CrossRefGoogle Scholar
  24. 24.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  25. 25.
    Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75:1063–1065CrossRefGoogle Scholar
  26. 26.
    Wu D, Liu X (2010) Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo. Appl Phys Lett 97:061904CrossRefGoogle Scholar
  27. 27.
    Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9(8):3066–3071CrossRefGoogle Scholar
  28. 28.
    Giannini V, Sánchez-Gil JA (2008) Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Opt Lett 33(9):899–901CrossRefGoogle Scholar
  29. 29.
    Liaw J-W (2008) Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE JSTQE 14(6):1441–1447Google Scholar
  30. 30.
    Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2):819–832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChang Gung UniversityTao-YuanRepublic of China
  2. 2.Institute of Applied MechanicsNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations