Plasmonics

, Volume 6, Issue 3, pp 591–597 | Cite as

Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits

  • Hong-Son Chu
  • Ping Bai
  • Er-Ping Li
  • Wolfgang R. J. Hoefer
Article

Abstract

The key challenge of the plasmonic waveguide is to achieve simultaneously both the long propagation length and high confinement. The hybrid dielectric-loaded plasmonic waveguide consists of a SiO2 stripe sandwiched between a Si-nanowire and a silver film and thus promises as a best candidate to overcome this challenge. We propose to exploit this unique property of this structure to design different high-efficient silicon-based plasmonic components including waveguide, power splitter, and wavelength-selective ring resonator. As a result, the proposed power splitter with a waveguide cross section (λ2/60) and a strong mode confinement area (~λ2/240) features a low power transmission loss (<0.4 dB) at the optimal arm length of 4 μm with respect to different separation distances of output arms. Moreover, we also demonstrate that a plasmonic ring resonator with a compact ring radius of 2 μm may achieve high optical performance such as high-extinction ratio of 30 dB, large free spectral range of 67 nm, and small bandwidth of 0.6 nm. These superior performances make them promising building blocks for integrated nanophotonic circuits.

Keywords

Surface plasmons Waveguide Power splitter Ring resonator 

References

  1. 1.
    Reed GT, Knights AP (2004) Silicon photonics: an introduction. John Wiley and Sons, 1st EditionGoogle Scholar
  2. 2.
    Soref R (2006) The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12:1678–1687CrossRefGoogle Scholar
  3. 3.
    Krauss TF, De La Rue RM (1999) Photonic crystals in the optical regime—past, present and future. Progr Quant Electron 23:51–96CrossRefGoogle Scholar
  4. 4.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  5. 5.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91CrossRefGoogle Scholar
  6. 6.
    Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417–125431CrossRefGoogle Scholar
  7. 7.
    Rosenzveig T, Hermannsson PG, Leosson K (2010) Modelling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5:75–77CrossRefGoogle Scholar
  8. 8.
    Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333CrossRefGoogle Scholar
  9. 9.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  10. 10.
    Bozhevolnyi SI, Volkov VS, Devaux D, Laluet JY, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength waveguide metal grooves. Phys Rev Lett 95:046802–046805CrossRefGoogle Scholar
  11. 11.
    Bozhevolnyi SI, Jung J (2008) Scaling gap for plasmon based waveguides (2008). Optic Express 16:2676–2684CrossRefGoogle Scholar
  12. 12.
    Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539–554CrossRefGoogle Scholar
  13. 13.
    Tanaka K, Tanaka M (2003) Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett 82:1158–1160CrossRefGoogle Scholar
  14. 14.
    Steinberger B, Hohenau A, Ditlbacher H, Aussenegg FR, Krenn JR (2007) Appl Phys Lett 91:081111–081113CrossRefGoogle Scholar
  15. 15.
    Krasavin V, Zayats AV (2008) Three-dimensional numerical modelling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425–045432CrossRefGoogle Scholar
  16. 16.
    Chu HS, Ewe WB, Li EP (2009) Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides. J Appl Phys 106:106101–106103CrossRefGoogle Scholar
  17. 17.
    Passinger S, Seidel A, Ohrt C, Reinhardt C, Stepanov A, Kiyan R, Chichkov B (2008) Novel efficient design of Y-splitter for surface plasmon polariton applications. Optic Express 16:14369–14379CrossRefGoogle Scholar
  18. 18.
    Veronis G, Fan S (2008) Crosstalk between three-dimensional plasmonic slot waveguides. Optic Express 16:2129–2140CrossRefGoogle Scholar
  19. 19.
    Boltasseva A, Bozhevolnyi SI, Søndergaard T, Nikolajsen T, Leosson K (2005) Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons. Optic Express 13:4237–4243CrossRefGoogle Scholar
  20. 20.
    Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmonics 5:417–422CrossRefGoogle Scholar
  21. 21.
    Volkov VS, Bozhevolnyi SI, Devaux E, Laluet JY, Ebbesen TW (2007) Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Letters 7:880–884CrossRefGoogle Scholar
  22. 22.
    Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A, Krasavin AV, Zayats A (2009) Wavelength selection by dielectric-loaded plasmonic components. Appl Phys Lett 94:051111–051113CrossRefGoogle Scholar
  23. 23.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  24. 24.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2:496–500CrossRefGoogle Scholar
  25. 25.
    Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:221103–222105CrossRefGoogle Scholar
  26. 26.
    Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C, Akerman J, Tong L, Qiu M (2010) Nanowaveguides and couplers based on hybrid plasmonic modes. Appl Phys Lett 97:231121–231123CrossRefGoogle Scholar
  27. 27.
    Alam MZ, Meier J, Aitchison JS, Mojahedi M (2010) Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optic Express 18:12971–12979CrossRefGoogle Scholar
  28. 28.
    Xiao YF, Li BB, Jiang X, Hu XY, Li Y, Gong QH (2010) High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B Atom Mol Opt Phys 43:035402–035406CrossRefGoogle Scholar
  29. 29.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632CrossRefGoogle Scholar
  30. 30.
    Ma RM, Oulton RF, Sorger VJ, Bartal G, Zhang X (2011) Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10:110–113CrossRefGoogle Scholar
  31. 31.
    Zhu Z, Brown TG (2002) Full-vectorial finite-difference analysis of microstructured optical fibers. Optic Express 10:853–864Google Scholar
  32. 32.
    Almeida VR, Xu Q, Barrios A, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Lett 29:1209–1211CrossRefGoogle Scholar
  33. 33.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  34. 34.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405–075415CrossRefGoogle Scholar
  35. 35.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, BostonGoogle Scholar
  36. 36.
    Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36:321–322CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong-Son Chu
    • 1
  • Ping Bai
    • 1
  • Er-Ping Li
    • 1
  • Wolfgang R. J. Hoefer
    • 1
  1. 1.Electronics and Photonics DepartmentInstitute of High Performance Computing, A*STARSingaporeSingapore

Personalised recommendations