A Review on Functionalized Gold Nanoparticles for Biosensing Applications

Abstract

Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted sensing of selective biomolecules using functionalized gold nanoparticles (Au NPs) has become a major research thrust in the last decade. Au NP-based sensors are expected to change the very foundations of sensing and detecting biomolecules. In this review, we will discuss the use of surface functionalized Au NPs for smart sensor fabrication leading to detection of specific biomolecules and heavy metal ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Schmid G (ed) (1994) Clusters and colloids—from theory to applications. VCH, Weinheim

    Google Scholar 

  2. 2.

    Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    CAS  Article  Google Scholar 

  3. 3.

    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225

    CAS  Article  Google Scholar 

  4. 4.

    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    CAS  Article  Google Scholar 

  5. 5.

    Krug JT, Wang GD, Emory SR, Nie SM (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121(39):9208–9214

    CAS  Article  Google Scholar 

  6. 6.

    Rodriguez-Lorenzo L, Alvarez-Puebla RA, de Abajo FJG, Liz-Marzan LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340

    CAS  Article  Google Scholar 

  7. 7.

    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    CAS  Article  Google Scholar 

  8. 8.

    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    CAS  Article  Google Scholar 

  9. 9.

    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    CAS  Article  Google Scholar 

  10. 10.

    Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111(40):14664–14669

    CAS  Article  Google Scholar 

  11. 11.

    Kubo R (1962) Electronic properties of metallic fine particles 1. J Phys Soc Jpn 17(6):975–986

    CAS  Article  Google Scholar 

  12. 12.

    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    CAS  Article  Google Scholar 

  13. 13.

    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    CAS  Article  Google Scholar 

  14. 14.

    Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25(3):377–445

    CAS  Article  Google Scholar 

  15. 15.

    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem 262(2):137–156

    CAS  Article  Google Scholar 

  16. 16.

    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    CAS  Article  Google Scholar 

  17. 17.

    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862

    CAS  Article  Google Scholar 

  18. 18.

    Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76(18):5370–5378

    CAS  Article  Google Scholar 

  19. 19.

    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    CAS  Article  Google Scholar 

  20. 20.

    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    CAS  Article  Google Scholar 

  21. 21.

    Emory SR, Nie S (1998) Screening and enrichment of metal nanoparticles with novel optical properties. J Phys Chem B 102(3):493–497

    CAS  Article  Google Scholar 

  22. 22.

    Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101(36):7033–7037

    CAS  Article  Google Scholar 

  23. 23.

    Maye MM, Zheng WX, Leibowitz FL, Ly NK, Zhong CJ (2000) Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulations. Langmuir 16(2):490–497

    CAS  Article  Google Scholar 

  24. 24.

    Martin MN, Basham JI, Chando P, Eah SK (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26(10):7410–7417

    CAS  Article  Google Scholar 

  25. 25.

    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    CAS  Article  Google Scholar 

  26. 26.

    Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14(26):7392–7396

    CAS  Article  Google Scholar 

  27. 27.

    Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11(9):2310–2312

    CAS  Article  Google Scholar 

  28. 28.

    Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    CAS  Article  Google Scholar 

  29. 29.

    Hu JQ, Zhang Y, Liu B, Liu JX, Zhou HH, Xu YF, Jiang YX, Yang ZL, Tian ZQ (2004) Synthesis and properties of tadpole-shaped gold nanoparticles. J Am Chem Soc 126(31):9470–9471

    Article  Google Scholar 

  30. 30.

    Kuo CH, Chiang TF, Chen LJ, Huang MH (2004) Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. Langmuir 20(18):7820–7824

    CAS  Article  Google Scholar 

  31. 31.

    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  32. 32.

    Frens G (1972) Particle-size and sol stability in metal colloids. Kolloid-Z Z Polym 250(7):736–741

    CAS  Article  Google Scholar 

  33. 33.

    Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature-Physical Science 241(105):20–22

    CAS  Google Scholar 

  34. 34.

    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707

    CAS  Article  Google Scholar 

  35. 35.

    Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043

    CAS  Article  Google Scholar 

  36. 36.

    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanopaticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun 7:801–802

    Article  Google Scholar 

  37. 37.

    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc, Chem Commun 16:1655–1656

    Article  Google Scholar 

  38. 38.

    Porter LA, Ji D, Westcott SL, Graupe M, Czernuszewicz RS, Halas NJ, Lee TR (1998) Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 14(26):7378–7386

    CAS  Article  Google Scholar 

  39. 39.

    Foos EE, Snow AW, Twigg ME, Ancona MG (2002) Thiol-terminated Di-, Tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral cluster. Chem Mater 14(5):2401–2408

    CAS  Article  Google Scholar 

  40. 40.

    Sudeep PK, Ipe BI, Thomas KG, George MV, Barazzouk S, Hotchandani S, Kamat PV (2002) Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2(1):29–35

    CAS  Article  Google Scholar 

  41. 41.

    Thomas KG, Kamat PV (2003) Chromophore-functionalized gold nanoparticles. Acc Chem Res 36(12):888–898

    CAS  Article  Google Scholar 

  42. 42.

    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57

    CAS  Article  Google Scholar 

  43. 43.

    Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2(1):113–123

    CAS  Article  Google Scholar 

  44. 44.

    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393

    CAS  Article  Google Scholar 

  45. 45.

    Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    CAS  Article  Google Scholar 

  46. 46.

    Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem 14(12):1795–1797

    CAS  Article  Google Scholar 

  47. 47.

    Kim KS, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20(3):556–560

    CAS  Article  Google Scholar 

  48. 48.

    Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM (2002) Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18(9):3694–3697

    CAS  Article  Google Scholar 

  49. 49.

    Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123(34):8226–8230

    CAS  Article  Google Scholar 

  50. 50.

    Huang HZ, Yang XR (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339(15):2627–2631

    CAS  Article  Google Scholar 

  51. 51.

    Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126(23):7176–7177

    CAS  Article  Google Scholar 

  52. 52.

    Aldaye FA, Sleiman HF (2006) Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew Chem Int Ed 45(14):2204–2209

    CAS  Article  Google Scholar 

  53. 53.

    Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783

    CAS  Article  Google Scholar 

  54. 54.

    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    CAS  Google Scholar 

  55. 55.

    Mei SHJ, Liu ZJ, Brennan JD, Li YF (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 125(2):412–420

    CAS  Article  Google Scholar 

  56. 56.

    Gearheart LA, Ploehn HJ, Murphy CJ (2001) Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA. J Phys Chem B 105(50):12609–12615

    CAS  Article  Google Scholar 

  57. 57.

    Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039

    CAS  Article  Google Scholar 

  58. 58.

    Li HX, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76(18):5414–5417

    CAS  Article  Google Scholar 

  59. 59.

    Liu JW, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76(6):1627–1632

    CAS  Article  Google Scholar 

  60. 60.

    Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94

    CAS  Article  Google Scholar 

  61. 61.

    Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    CAS  Article  Google Scholar 

  62. 62.

    Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CAS  Article  Google Scholar 

  63. 63.

    Wang DY, Lai BHY, Feldman AR, Sen D (2002) A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res 30(8):1735–1742

    CAS  Article  Google Scholar 

  64. 64.

    Wark AW, Lee HJ, Qavi AJ, Corn RM (2007) Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem 79(17):6697–6701

    CAS  Article  Google Scholar 

  65. 65.

    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    CAS  Article  Google Scholar 

  66. 66.

    Mariotti E, Minunni M, Mascini M (2002) Surface plasmon resonance biosensor for genetically modified organisms detection. Anal Chim Acta 453(2):165–172

    CAS  Article  Google Scholar 

  67. 67.

    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72(22):5535–5541

    CAS  Article  Google Scholar 

  68. 68.

    Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78(18):6332–6339

    CAS  Article  Google Scholar 

  69. 69.

    Huang CC, Huang YF, Cao ZH, Tan WH, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    CAS  Article  Google Scholar 

  70. 70.

    Matsubara K, Kawata S, Minami S (1988) Optical chemical sensor based on surface-plasmon measurement. Appl Opt 27(6):1160–1163

    CAS  Article  Google Scholar 

  71. 71.

    Zhang LM, Uttamchandani D (1988) Optical chemical sensing employing surface-plasmon resonance. Electron Lett 24(23):1469–1470

    Article  Google Scholar 

  72. 72.

    Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    CAS  Article  Google Scholar 

  73. 73.

    Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators 4(2):299–304

    CAS  Google Scholar 

  74. 74.

    Spadavecchia J, Manera MG, Quaranta F, Siciliano P, Rella R (2005) Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21(6):894–900

    CAS  Article  Google Scholar 

  75. 75.

    Margheri G, Giorgetti E, Sottini S, Toci G (2003) Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques. J Opt Soc Am B: Opt Phys 20(4):741–751

    CAS  Article  Google Scholar 

  76. 76.

    Ho HP, Wu SY, Yang M, Cheung AC (2001) Application of white light-emitting diode to surface plasmon resonance sensors. Sens Actuators, B 80(2):89–94

    Article  Google Scholar 

  77. 77.

    Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin AV (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15(4):1745–1754

    CAS  Article  Google Scholar 

  78. 78.

    Law WC, Markowicz P, Yong KT, Roy I, Baev A, Patskovsky S, Kabashin AV, Ho HP, Prasad PN (2007) Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron 23(5):627–632

    CAS  Article  Google Scholar 

  79. 79.

    Law WC, Yong KT, Baev A, Hu R, Prasad PN (2009) Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express 17(21):19041–19046

    CAS  Article  Google Scholar 

  80. 80.

    Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2005) SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem 77(13):4282–4285

    CAS  Article  Google Scholar 

  81. 81.

    Ding L, Hao C, Xue YD, Ju HX (2007) A bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8(4):1341–1346

    CAS  Article  Google Scholar 

  82. 82.

    Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385

    CAS  Article  Google Scholar 

  83. 83.

    Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103(5):1215–1220

    CAS  Article  Google Scholar 

  84. 84.

    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509

    CAS  Article  Google Scholar 

  85. 85.

    Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74(7):1624–1628

    CAS  Article  Google Scholar 

  86. 86.

    Ahirwal GK, Mitra CK (2010) Gold nanoparticles based sandwich electrochemical immunosensor. Biosens Bioelectron 25(9):2016–2020

    CAS  Article  Google Scholar 

  87. 87.

    Xiang CL, Zou YJ, Sun LX, Xu F (2008) Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun 10(1):38–41

    CAS  Article  Google Scholar 

  88. 88.

    Darbha GK, Singh AK, Rai US, Yu E, Yu HT, Ray PC (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043

    CAS  Article  Google Scholar 

  89. 89.

    Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25(5):984–989

    CAS  Article  Google Scholar 

  90. 90.

    Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305

    CAS  Article  Google Scholar 

  91. 91.

    Slocik JM, Zabinski JS, Phillips DM, Naik RR (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4(5):548–551

    CAS  Article  Google Scholar 

  92. 92.

    Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643

    CAS  Article  Google Scholar 

  93. 93.

    Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20(17):3263–3267

    CAS  Article  Google Scholar 

  94. 94.

    Chai F, Wang CA, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2(5):1466–1470

    CAS  Article  Google Scholar 

  95. 95.

    Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun 19:2242–2244

    Article  CAS  Google Scholar 

  96. 96.

    Lee JS, Mirkin CA (2008) Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem 80(17):6805–6808

    CAS  Article  Google Scholar 

  97. 97.

    Wilson GS, Hu YB (2000) Enzyme based biosensors for in vivo measurements. Chem Rev 100(7):2693–2704

    CAS  Article  Google Scholar 

  98. 98.

    Zhang SX, Wang N, Yu HJ, Niu YM, Sun CQ (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67(1):15–22

    CAS  Article  Google Scholar 

  99. 99.

    Zen JM, Kumar AS, Chung CR (2003) A glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinder. Anal Chem 75(11):2703–2709

    CAS  Article  Google Scholar 

  100. 100.

    Battaglini F, Bartlett PN, Wang JH (2000) Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose. Anal Chem 72(3):502–509

    CAS  Article  Google Scholar 

  101. 101.

    Mano N, Heller A (2005) Detection of glucose at 2 fM concentration. Anal Chem 77(2):729–732

    CAS  Article  Google Scholar 

  102. 102.

    Lawrence NS, Deo RP, Wang J (2004) Biocatalytic carbon paste sensors based on a mediator pasting liquid. Anal Chem 76(13):3735–3739

    CAS  Article  Google Scholar 

  103. 103.

    Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12(10):2702–2708

    CAS  Article  Google Scholar 

  104. 104.

    Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22(6):838–844

    CAS  Article  Google Scholar 

  105. 105.

    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    CAS  Article  Google Scholar 

  106. 106.

    Astruc D, Daniel MC, Ruiz J (2004) Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions. Chem Commun 23:2637–2649

    Article  CAS  Google Scholar 

  107. 107.

    Sanz VC, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes—application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528(1):1–8

    Article  CAS  Google Scholar 

  108. 108.

    Chen SJ, Chang HT (2004) Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem 76(13):3727–3734

    CAS  Article  Google Scholar 

  109. 109.

    Jemal A, Siegel R, Ward E, Hao YP, Xu JQ, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  Google Scholar 

  110. 110.

    Cutler DM (2008) Are we finally winning the war on cancer? J Econ Perspect 22(4):3–26

    Article  Google Scholar 

  111. 111.

    Banerjee AK, Rabbitts PH, George J (2003) Lung cancer center dot 3: fluorescence bronchoscopy: clinical dilemmas and research opportunities. Thorax 58(3):266–271

    CAS  Article  Google Scholar 

  112. 112.

    Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP (1988) A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin Chem 34(8):1613–1618

    CAS  Google Scholar 

  113. 113.

    Yu H, Xu L, Cao MF, Chen X, Wang P, Jiao JW, Wang YL, IEEE (2003) Detection volatile organic compounds in breath as markers of lung cancer using a novel electronic nose. Proc IEEE Sens 1 and 2:1333–1337

    Google Scholar 

  114. 114.

    Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP (1999) Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353(9168):1930–1933

    CAS  Article  Google Scholar 

  115. 115.

    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    CAS  Article  Google Scholar 

  116. 116.

    Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 7(10):3157–3164

    CAS  Article  Google Scholar 

  117. 117.

    Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74(9):2217–2223

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ken-Tye Yong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeng, S., Yong, KT., Roy, I. et al. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 6, 491 (2011). https://doi.org/10.1007/s11468-011-9228-1

Download citation

Keywords

  • Surface plasmon resonance
  • Gold nanoparticles
  • Biosensing
  • Surface functionalization