, Volume 5, Issue 4, pp 429–436 | Cite as

Coupled Plasmonic Cavities on Moire Surfaces

  • Sinan BalciEmail author
  • Mustafa Karabiyik
  • Askin Kocabas
  • Coskun Kocabas
  • Atilla Aydinli


Surface plasmon polariton (SPP) waveguides formed by coupled plasmonic cavities on metallic Moire surfaces have been investigated both experimentally and numerically. The Moire surface, fabricated by interference lithography, contains periodic arrays of one-dimensional cavities. The coupling strength between the cavities has been controlled by changing the periodicities of the Moire surface. The ability to control the coupling strength allows us to tune the dispersion and the group velocity of the plasmonic coupled cavity mode. Reflection measurements and numerical simulation of the array of SPP cavities have shown a coupled resonator type plasmonic waveguide band formation within the band gap. Coupling coefficients of cavities and group velocities of SPPs are calculated for a range of cavity sizes from weakly coupled regime to strongly coupled regime.


Surface plasmon polariton (SPP) Plasmonic cavity Plasmon Grating Coupled cavity 



S. Balci would like to acknowledge financial support of TUBITAK through a BİDEB grant. We thank Seckin Senlik for technical help. This work has been supported in part by a grant from TUBITAK (grant no. 104M421) and by EU 7th framework project, Unam-Regpot (grant no. 203953).


  1. 1.
    Raether H (1986) Surface plasmons. Springer, BerlinGoogle Scholar
  2. 2.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  3. 3.
    Kitson SC, Barnes WL, Sambles JR (1999) Full photonic band gap for surface modes in the visible. Phys Rev Lett 77:2670–2673CrossRefGoogle Scholar
  4. 4.
    Kitson SC, Barnes WL, Sambles JR (1995) Surface-plasmon energy gaps and photoluminescence. Phys Rev B 52:11441–11445CrossRefGoogle Scholar
  5. 5.
    Perney NMB, Abajo FLG, Baumberg JJ, Tang A, Netti MC, Charlton MDB, Zoorob ME (2007) Tuning plasmon cavities for optimized surface-enhanced Raman scattering. Phys Rev B 76:035426-1-5CrossRefGoogle Scholar
  6. 6.
    Weeber JC, Bouhelier A, Francs GC, Massenot S, Grandidier J, Markey L, Dereux A (2008) Surface-plasmon hopping along coupled coplanar cavities. Phys Rev B 76:113405-1-4Google Scholar
  7. 7.
    Weeber JC, Bouhelier A, Francs GC, Markey L, Dereux A (2007) Submicrometer in-plane integrated surface plasmon cavities. Nano Lett 7:1352–1359CrossRefGoogle Scholar
  8. 8.
    Kocabas A, Senlik SS, Aydinli A (2009) Slowing down surface plasmons on a Moire surface. Phys Rev Lett 102:063901–063904CrossRefGoogle Scholar
  9. 9.
    Kocabas A, Senlik SS, Aydinli A (2009) Plasmonic band gap cavities on biharmonic gratings. Phys Rev B 77:195130-1-7Google Scholar
  10. 10.
    Senlik SS, Kocabas A, Aydinli A (2009) Grating based plasmonic band gap cavities. Opt Express 17:15541–15549CrossRefGoogle Scholar
  11. 11.
    Gong Y, Vuckovic J (2007) Design of plasmon cavities for solid-state cavity electrodynamics applications. App Phys Lett 90:033113-1-3CrossRefGoogle Scholar
  12. 12.
    Liu C, Kamaev V, Vardeny ZV (2005) Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. App Phys Lett 86:143501-1-3Google Scholar
  13. 13.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112CrossRefGoogle Scholar
  14. 14.
    Yablonovitch E, Gmitter TJ, Meade RD, Rappe AM, Brommer KD, Joannopoulos JD (1991) Donor and acceptor modes in photonic band structure. Phys Rev Lett 67:3380–3383CrossRefGoogle Scholar
  15. 15.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13:1501–1505CrossRefGoogle Scholar
  16. 16.
    Yariv A, Xu Y, Lee RK, Scherer A (1999) Coupled-resonator optical waveguide: a proposal and analysis. Opt Lett 24:711–713CrossRefGoogle Scholar
  17. 17.
    Khurgin JB (2000) Light slowing down in Moire fiber gratings and its implications for nonlinear optics. Phys Rev A 62:013821–013824CrossRefGoogle Scholar
  18. 18.
    Palik ED (1985) Handbook of optical constants of solids. Acedemic, OrlandoGoogle Scholar
  19. 19.
    Sakoda K (1999) Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt Express 4:167–176CrossRefGoogle Scholar
  20. 20.
    Gan Q, Yujie JD, Bartoli FJ (2009) “Rainbow” trapping and releasing at telecommunication wavelengths. Phys Rev Lett 102:056801–056804CrossRefGoogle Scholar
  21. 21.
    Barnes WL (2006) Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Opt A: Pure Appl Opt 8:S87–S93CrossRefGoogle Scholar

Copyright information

© FSpringer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sinan Balci
    • 1
    Email author
  • Mustafa Karabiyik
    • 1
  • Askin Kocabas
    • 1
    • 2
  • Coskun Kocabas
    • 1
  • Atilla Aydinli
    • 1
  1. 1.Advanced Research Laboratory, Turk Telekom Laboratory, Department of PhysicsBilkent UniversityAnkaraTurkey
  2. 2.FAS Center for Systems BiologyHarvard UniversityCambridgeUSA

Personalised recommendations