Advertisement

Plasmonics

, Volume 5, Issue 4, pp 423–428 | Cite as

Spatial Mode Selection by the Phase Modulation of Subwavelength Plasmonic Grating

  • Likang Cai
  • Jing Zhang
  • Wenli Bai
  • Qing Wang
  • Xin Wei
  • Guofeng SongEmail author
Article

Abstract

The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal–insulator–metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.

Keywords

Surface plasmon polariton Phase modulation Subwavelength plasmonic grating Mode selection 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant no.60876049, no.60906028, and no.60636030.

References

  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolf PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848CrossRefGoogle Scholar
  3. 3.
    Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88(5):057403CrossRefGoogle Scholar
  4. 4.
    Lee KG, Park QH (2005) Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys Rev Lett 95(10):103902CrossRefGoogle Scholar
  5. 5.
    Sun Z, Jung YS, Kim HK (2003) Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl Phys Lett 83(15):3021–3023CrossRefGoogle Scholar
  6. 6.
    Kim MW, Kim TT, Kim JE, Park HY (2009) Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films. Opt Express 17(15):12315–12322CrossRefGoogle Scholar
  7. 7.
    Pacific D, Lezec HJ, Atwater HA, Weiner J (2008) Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits. Phys Rev B 77(11):115411CrossRefGoogle Scholar
  8. 8.
    Hou B, Wen W (2008) Transmission resonances of electromagnetic wave through metallic gratings: phase and field characterizations. Opt Express 16(12):17098–17106CrossRefGoogle Scholar
  9. 9.
    Raether H (1988) Surface plasmons. Springer, BerlinGoogle Scholar
  10. 10.
    Tip A (2004) Linear dispersive dielectrics as limits of Drude–Lorentz systems. Phys Rev E 69(1):016610CrossRefGoogle Scholar
  11. 11.
    Palik ED (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  12. 12.
    Devaux E, Ebbesen TW, Weeber J-C, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83(24):4936–4938CrossRefGoogle Scholar
  13. 13.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  14. 14.
    Feigenbaum E, Orenstein M (2007) Modeling of complementary (void) plasmon waveguiding. J Lightwave Technol 25(9):2547–2562CrossRefGoogle Scholar
  15. 15.
    Prade B, Vinet JY, Mysyrowicz A (1991) Guided optical waves in planar heterostructures with negative dielectric constant. Phys Rev B 44(24):13556–13572CrossRefGoogle Scholar
  16. 16.
    Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96(9):097401CrossRefGoogle Scholar
  17. 17.
    Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X (2009) Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett 9(11):3489–3493CrossRefGoogle Scholar
  18. 18.
    Wang LP, Zhang ZM (2009) Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl Phys Lett 95(11):111904CrossRefGoogle Scholar
  19. 19.
    Garcia-Vidal FJ, Martin-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Likang Cai
    • 1
  • Jing Zhang
    • 1
  • Wenli Bai
    • 1
  • Qing Wang
    • 1
  • Xin Wei
    • 1
  • Guofeng Song
    • 1
    Email author
  1. 1.Institute of Semiconductors, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations