Advertisement

Plasmonics

, Volume 5, Issue 4, pp 417–422 | Cite as

Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects

  • Peng-Hsiao Lee
  • Yung-Chiang LanEmail author
Article

Abstract

This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.

Keywords

Plasmonic filter Strip cavity Metal–insulator–metal 

Notes

Acknowledgments

This work was supported by the National Science Council of the Republic of China under contract numbers NSC98-2112-M-006-005-MY3 and NSC99-2120-M-002-012. The National Center for High-Performance Computing of Taiwan and the Computer and the Network Center of National Cheng Kung University are also acknowledged for uses of high-performance computing facilities.

References

  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  2. 2.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  3. 3.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  4. 4.
    Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539–554CrossRefGoogle Scholar
  5. 5.
    Stegeman GI, Wallis RF, Maradudin AA (1983) Excitation of surface polaritons by end-fire coupling. Opt Lett 8:386–388CrossRefGoogle Scholar
  6. 6.
    Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107CrossRefGoogle Scholar
  7. 7.
    Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic Bragg reflector. Opt Express 14:11318–11323CrossRefGoogle Scholar
  8. 8.
    Boltasseva A, Bozhevolnyi SI, Nikolajsen T, Leosson K (2006) Compact Bragg gratings for long-range surface plasmon polaritons. J Lightwave Technol 24:912–918CrossRefGoogle Scholar
  9. 9.
    Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19:91–93CrossRefGoogle Scholar
  10. 10.
    Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16:413–425CrossRefGoogle Scholar
  11. 11.
    Hosseini A, Nejati H, Massoud Y (2008) Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt Express 16:1475–1480CrossRefGoogle Scholar
  12. 12.
    Liu JQ, Wang LL, He MD, Huang WQ, Wang D, Zou BS, Wen S (2008) A wide bandgap plasmonic Bragg reflector. Opt Express 16:4888–4893CrossRefGoogle Scholar
  13. 13.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876CrossRefGoogle Scholar
  14. 14.
    Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 16:10757–10766CrossRefGoogle Scholar
  15. 15.
    Tao J, Huang XG, Lin XS, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17:13989–13994CrossRefGoogle Scholar
  16. 16.
    Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102CrossRefGoogle Scholar
  17. 17.
    Tan WC, Preist TW, Sambles RJ (2000) Resonant tunneling of light through thin metal films via strongly localized surface plasmons. Phys Rev B 62:11134–11138CrossRefGoogle Scholar
  18. 18.
    Liu WC, Tsai DP (2002) Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys Rev B 65:155423CrossRefGoogle Scholar
  19. 19.
    Lan YC (2006) Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method. Appl Phys Lett 88:071109CrossRefGoogle Scholar
  20. 20.
    Lan YC, Chang CJ, Lee PH (2009) Resonant tunneling effects on cavity-embedded metal film caused by surface plasmon excitation. Opt Lett 34:25–27CrossRefGoogle Scholar
  21. 21.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, NorwoodGoogle Scholar
  22. 22.
    Chao CC, Tu SH, Wang CM, Huang HI, Chen CC, Chang JY (2010) Impedance-matching surface plasmon absorber for FDTD simulations. Plasmonics 5:51–55CrossRefGoogle Scholar
  23. 23.
    Pozar DM (1998) Microwave engineering. Wiley, New YorkGoogle Scholar
  24. 24.
    Yariv A (2000) Universal relations for coupling of optical power between microresonator and dielectric waveguides. Electron Lett 36:321–322CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Electro-Optical Science and EngineeringNational Cheng Kung UniversityTainanRepublic of China

Personalised recommendations