, Volume 5, Issue 4, pp 395–403 | Cite as

Building Interfacial Nanostructures by Size-Controlled Chemical Etching

  • Praskovia M. Boltovets
  • Sergiy A. Kravchenko
  • Borys A. SnopokEmail author


Development of soft chemical processes for the synthesis of interfacial architectures with well-defined structural nano-motifs organized over large areas in two dimensions is an important branch of nanotechnology. The present study deals with the fabrication of gold nanostructures using size-selective chemical etching of continuous gold films on glass support with titanium and chromium adhesive layers. In this process, which is called self-passivated surface etching, a gold film is etched in the presence of citric acid, resulting in gold nanostructures adhering to the metal support. The size-controlled chemical dissolution of gold is driven by a competing reaction between self-organized passivation of surface nano-motifs by citric acid shells and soft etching by a nonoxidative composition containing hydrochloric acid and hydrogen peroxide in water. According to these results, the presence of a chemically stable adhesive layer (titanium), citric acid in solution, and agitation are critical factors to be considered. However, the nature of the adhesive layer is the most influential factor. The following technique presents a simple method for the rapid fabrication of a nanostructured gold substrate that has the ability to support both propagating and localized surface plasmon resonances simultaneously.


Interfacial nanostructures Chemical etching Thin films Gold nanostructures Surface plasmon resonance 



We thank National Academia of Sciences for financial support, Viktor Lyapin and Kelly Chackon for help in manuscript preparation.


  1. 1.
    Vaskevich A, Rubinstein I (2007) In: Marks RS (ed) Handbook of biosensors and biochips. Willey and Sons, New York, pp 447–470Google Scholar
  2. 2.
    Haes A, Stuart DA, Nie S, Van Duyne P (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 11:355–367CrossRefGoogle Scholar
  3. 3.
    Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, Yonezawa Y, Nakano K, Taniya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78:6405–6475CrossRefGoogle Scholar
  4. 4.
    Haes A, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271CrossRefGoogle Scholar
  5. 5.
    Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350CrossRefGoogle Scholar
  6. 6.
    Kelf TA, Sugawara Y, Cole RM, Baumberg JJ (2006) Localized and delocalized plasmons in metelic nanovoids. Physical Review B 74:245415-1–245415-12CrossRefGoogle Scholar
  7. 7.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRefGoogle Scholar
  8. 8.
    Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Porous silicon as efficient surface-enhanced Raman scattering (SERS) substrate. Appl Surf Sci 254:7494–7497CrossRefGoogle Scholar
  9. 9.
    Huang JF, Sun IW (2005) Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Adv Funct Mater 15:989–994CrossRefGoogle Scholar
  10. 10.
    Forty AJ (1979) Corrosion micro-morphology of noble-metal alloys and depletion gilding. Nature 282:597–598CrossRefGoogle Scholar
  11. 11.
    Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf: “Ancient technology”/advanced material. Adv Mater 16:1897–1900CrossRefGoogle Scholar
  12. 12.
    Mattei G, Marchi GD, Maurizio C, Mazzoldi P, Sada C, Bello V, Battaglin G (2003) Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters. Phys Rev Lett 90:085502–085505CrossRefGoogle Scholar
  13. 13.
    Willets K, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  14. 14.
    Haes A, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  15. 15.
    Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksish M, Van Duynem RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126:12669–12676CrossRefGoogle Scholar
  16. 16.
    Barlas TR, Dmitruk NL, Kotova NV, Mayeva OI, Romanyuk VR (2005) Self-assembling of metal nanoparticles on patterned semiconductor surface (Au/GaAs). Superlattices Microstruct 38:130–141CrossRefGoogle Scholar
  17. 17.
    Abed O, Vaskevich A, Arad-Yellin R, Shanzer A, Rubinstein I (2005) Preparative manipulation of gold nanoparticles by reversible binding to a polymeric solid support. Chem Eur J 11:2836–2841CrossRefGoogle Scholar
  18. 18.
    Liu F-K, Huang P-W, Chang Y-C, Ko F-H, Chu T-C (2005) Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 21:2519–2525CrossRefGoogle Scholar
  19. 19.
    Turkevich J, Stevenson PC, Hillier JA (1951) Study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Discuss 11:55–75CrossRefGoogle Scholar
  20. 20.
    Thomas KG, Ipe BI, Sudeep PK (2002) Photochemistry of chromophore-functionalized gold nanoparticles. Pure Appl Chem 74:1731–1738CrossRefGoogle Scholar
  21. 21.
    Johnson JCF (1898) Getting gold: a practical treatise for prospectors, miners and students. Griffin, LondonGoogle Scholar
  22. 22.
    Savchenko A, Kashuba E, Kashuba V, Snopok B (2008) Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions. Sensor lett 6:705–713CrossRefGoogle Scholar
  23. 23.
    Suzdal IP (2006) Nanotechnology: physical chemistry of nanoclasters, nanostructures and nanomaterials. Komkniga, MoscowGoogle Scholar
  24. 24.
    Widing CA, Majda M (1987) Mediated, thin-layer cell, coulometric determination of monomolecular films of trichlorosilane viologen derivatives at gold and nonconducting surfaces. Anal Chem 59:754–760CrossRefGoogle Scholar
  25. 25.
    Mosier-Boss PA, Lieberman SH (1999) Comparison of three methods to improve adherence of thin gold films to glass substrates and their effect on the SERS response. Appl Spectrosc 53:862–873CrossRefGoogle Scholar
  26. 26.
    Shin Y-B, Lee J-M, Park M-R, Kim M-G, Chung BH, Pyo H-B, Maeng S (2007) Analysis of recombinant protein expression using localized surface plasmon resonance (LSPR). Biosens Bioelectron 22:2301–2307CrossRefGoogle Scholar
  27. 27.
    Beketov GV, Shirshov YuM, Shynkarenko OV, Chegel VI (1998) Surface plasmon resonance spectroscopy: prospects of superstate refractive index variation for separate extraction of molecular layer parameters. Sens Act B 48:432–438CrossRefGoogle Scholar
  28. 28.
    Benjamin P, Weaver C (1961) The adhesion of evaporated metal films on glass. Proc Royal Soc London Ser A, Math Phys Sci 261:516–531CrossRefGoogle Scholar
  29. 29.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262:137–156CrossRefGoogle Scholar
  30. 30.
    Park S-E, Park M-Y, Po-Keun Han PK, Lee SW (2006) The effect of pH-adjusted gold colloids on the formation of gold clusters over APTMS-coated silica cores. Bull Korean Chem Soc 27:1341–1345CrossRefGoogle Scholar
  31. 31.
    Matveev AN (1985) Optics. Vishaja Shkola, MoscowGoogle Scholar
  32. 32.
    Glinka NL (1990) General chemistry. Mir, MoscowGoogle Scholar
  33. 33.
    Nekrasov BV (1967) Fundamentals of general chemistry. Khimiya, MoscowGoogle Scholar
  34. 34.
    Vogtle F (1993) Supramolecular chemistry. JohnWilry & Sons Ltd., ChichesterGoogle Scholar
  35. 35.
    Doolitle JW, Dutta PK (2006) Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system. Langmuir 22:4825–4831CrossRefGoogle Scholar
  36. 36.
    Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10:922–926CrossRefGoogle Scholar
  37. 37.
    Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36CrossRefGoogle Scholar
  38. 38.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–56Google Scholar
  39. 39.
    Frenkel SJ, Zhigelnii IM, Kolypaev BS (1990) Molecular cybernetics. Svit, LvivGoogle Scholar
  40. 40.
    Zangwill A (1988) Physics at surfaces. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Lim I-Im S, Mott D, Ip W, Njoki PN, Pan Y, Zhou S, Zhong C-J (2008) Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24:8857–8863CrossRefGoogle Scholar
  42. 42.
    Snopok BA, Kruglenko IV (2005) Nonexponential relaxations in sensor arrays: forecasting strategy for electronic nose performance. Sens Act B 106:101–113CrossRefGoogle Scholar
  43. 43.
    Bychuk OV, O’Shaughnessy B (1994) Adsorption-desorption kinetics at liquid surfaces. J Colloid Interface Sci 167:193–203CrossRefGoogle Scholar
  44. 44.
    Novo C, Funston AM, Mulvaney P (2008) Direct obseration of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602CrossRefGoogle Scholar
  45. 45.
    Mott D, Galkowski J, Wang L, Luo J, Zhong C-J (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745CrossRefGoogle Scholar
  46. 46.
    Glusker JP, Minkin JA, Patterson AL (1969) X-ray crystal analysis of the substrates of aconitase. IX. A refinement of the structure of anhydrous citric acid. Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 25:1066–1072CrossRefGoogle Scholar
  47. 47.
    Rehbinder PA, Shchukin ED (1972) Surface phenomena in solids during deformation and fracture processes. Prog Surf Sci 3:97–104CrossRefGoogle Scholar
  48. 48.
    Pertsov AV, Pertsov NV (2005) In: Shpak AP, Ulberg ZR (eds) Colloid-chemical bases of nanoscience. Akademperiodyka, KievGoogle Scholar
  49. 49.
    Englebienne P, Van Hoonacker A, Verhas M, Khlebtsov NG (2003) Advances in high-throughput screening: biomolecular interaction monitoring in real-time with colloidal metal nanoparticles. Comb Chem High Throughput Screen 8:777–787Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Praskovia M. Boltovets
    • 1
  • Sergiy A. Kravchenko
    • 1
  • Borys A. Snopok
    • 1
    Email author
  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of SciencesKyivUkraine

Personalised recommendations