Advertisement

Plasmonics

, Volume 5, Issue 4, pp 383–387 | Cite as

Studies of Surface-Adsorbed Fluorescently Labeled Casein and Concanavalin A Using Surface Plasmon-Coupled Emission

  • R. Sai Sathish
  • Yordan KostovEmail author
  • Govind Rao
Article

Abstract

We report the use of surface plasmon-coupled emission (SPCE) as an analytical tool to study the photophysics of surface-adsorbed fluorescently labeled proteins. The study uses plasma etching of PMMA surface followed by deposition of poly(diallyldimethylammonium chloride) (PDDA) for surface protein detection. PDDA increases the overall amount of the captured protein and also promotes dye aggregation. The photon-sorting properties of the SPCE process allows for wavelength separation of the individual components from the protein–dye aggregates. This has been exploited to study the fluorescence emissions from casein labeled with fluorescein isothiocyanate and concanavalin A labeled with tetramethylrhodamine. Based on the current findings, the proteins can be used to measure background fluorescence or to monitor the microenvironments in fluoroimmunoassays on SPCE substrates.

Keywords

Surface plasmon-coupled emission Protein monolayers Silver films Plasma etch Spectral resolution 

Abbreviations

SPCE

Surface plasmon-coupled emission

PMMA

Poly(methyl methacrylate)

RK

Reverse Kretschmann

SPR

Surface plasmon resonance

FITC

Fluorescein isothiocyanate

Con A

Concanavalin A

TMRhodB

Tetramethylrhodamine

LBL

Layer by layer

Notes

Acknowledgment

This work was made possible by funding from the following grant award: NSF-BES 0517785.

References

  1. 1.
    Sentandreu MA, Aubry L, Toldrá F, Ouali A (2007) Blocking agents for ELISA quantification of compounds coming from bovine muscle crude extracts. Eur Food Res Technol 224:623–628CrossRefGoogle Scholar
  2. 2.
    Sharon N, Lis H (1972) Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949–959CrossRefGoogle Scholar
  3. 3.
    Dong J, Mielczarski JA, Mielczarski E, Xu Z (2008) In situ characterization of the adsorbed concanavalin A on germanium surface at various pH. Biotechnol Prog 24(4):972–980CrossRefGoogle Scholar
  4. 4.
    Revell DJ, Knight JR, Blyth DJ, Haines AH, Russell DA (1998) Self-assembled carbohydrate monolayers: formation and surface selective molecular recognition. Langmuir 14:4517–4524CrossRefGoogle Scholar
  5. 5.
    Vetri V, Carrotta R, Picone P, Di Carlo M, Militello V (2010) Concanavalin A aggregation and toxicity on cell cultures. Biochim Biophys Acta 1804(1):173–183Google Scholar
  6. 6.
    Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169CrossRefGoogle Scholar
  7. 7.
    Hiep HM, Fujii M, Hayashi S (2007) Effects of molecular orientation on surface-plasmon coupled emission patterns. Appl Phys Lett 91:183110–183113CrossRefGoogle Scholar
  8. 8.
    Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324(2):170–182CrossRefGoogle Scholar
  9. 9.
    Ray K, Chowdhury MH, Lakowicz JR (2008) Observation of surface plasmon-coupled emission using thin platinum films. Chem Phys Lett 465(1–3):92–95CrossRefGoogle Scholar
  10. 10.
    Aslan K, McDonald K, Previte MJR, Zhang Y, Geddes CD (2008) Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chem Phys Lett 464(4–6):216–219CrossRefGoogle Scholar
  11. 11.
    Ray K, Szmacinski H, Enderlein J, Lakowicz JR (2007) Distance dependence of surface plasmon-coupled emission observed using Langmuir–Blodgett films. Appl Phys Lett 90:251116-3Google Scholar
  12. 12.
    Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735CrossRefGoogle Scholar
  13. 13.
    Smith DS, Kostov Y, Rao G (2007) SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sens Actuator B 127:432–440CrossRefGoogle Scholar
  14. 14.
    Stefani FD, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys Rev Lett 94:023005-4Google Scholar
  15. 15.
    Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I (2005) Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem 344:161–167CrossRefGoogle Scholar
  16. 16.
    Aslan K, Zhang Y, Geddes CD (2009) Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays. Anal Chem 81:3801–3808CrossRefGoogle Scholar
  17. 17.
    Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I (2006) Application of surface plasmon coupled emission to study of muscle. Biophys J 91:2626–2635CrossRefGoogle Scholar
  18. 18.
    Sai Sathish R, Kostov Y, Rao G (2009) High-resolution surface plasmon coupled resonant filter for monitoring of fluorescence emission from molecular multiplexes. Appl Phys Lett 94:223113-3Google Scholar
  19. 19.
    Sai Sathish R, Kostov Y, Rao G (2009) Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission. Appl Opt 48(28):5348–5353CrossRefGoogle Scholar
  20. 20.
    Sai Sathish R, Kostov Y, Smith D, Rao G (2009) Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors. Plasmonics 4:127–133CrossRefGoogle Scholar
  21. 21.
    Smith D, Sai Sathish R, Kostov Y, Smith D, Rao G (2010) Solution deposition of nanometer scale silver films as an alternative to vapor deposition for plasmonic excitation. Thin Solid Films 518:3772–3777. doi: 10.1016/j.tsf.2009.12.090 CrossRefGoogle Scholar
  22. 22.
    Çapan İ, Tarımcı Ç, Hassan AK, Tanrısever T (2009) Characterisation and optical vapour sensing properties of PMMA thin films. Mater Sci Eng C 29:140–143CrossRefGoogle Scholar
  23. 23.
    Çapan İ, Tarımcı Ç, Erdoğan M, Hassan AK (2009) Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer. Mater Sci Eng C 29:1114–1117CrossRefGoogle Scholar
  24. 24.
    Wen X, He H, Lee LJ (2009) Specific antibody immobilization with biotin-poly(l-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips. J Immunol Methods 350:97–105CrossRefGoogle Scholar
  25. 25.
    Tsougeni K, Petrou PS, Tserepi A, Kakabakos SE, Gogolides E (2009) Nano-texturing of poly(methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectron J 86:1424–1427CrossRefGoogle Scholar
  26. 26.
    Kreschmann E, Raether H (1968) Radiative decay of nonradiative surface plasmons excited by light. Z Naturforsch Teil A 23:2135–2136Google Scholar
  27. 27.
    Raether H (1997) Physics of thin films: advances in research and development. Academic, New YorkGoogle Scholar
  28. 28.
    Beverung CJ, Radke CJ, Blanch HW (1999) Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys Chem 81:59–80CrossRefGoogle Scholar
  29. 29.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  30. 30.
    Speiser S, Chisena FL (2004) Optical bistability in fluorescein dyes. Appl Phys B Lasers O 45:137–144CrossRefGoogle Scholar
  31. 31.
    Ageev DV, Patsaeva SV, Ryzhikov BD, Sorokin VN, Yuzhakov VI (2008) Influence of temperature and ethanol content on aggregation of rhodamine 6G molecules in aqueous ethanol solutions. J Appl Spectrosc 75:653–657CrossRefGoogle Scholar
  32. 32.
    Taguchi T, Hirayama S, Okamoto M (1994) New spectroscopic evidence for molecular aggregates of rhodamine 6G in aqueous solution at high pressure. Chem Phys Lett 231:561–568CrossRefGoogle Scholar
  33. 33.
    Pockrand I, Brillante A (1980) Nonradiative decay of excited molecules near a metal surface. Chem Phys Lett 69:499–504CrossRefGoogle Scholar
  34. 34.
    Bojarski P, Matczuk A, Bojarskic C, Kawski A, Kuklińsk B, Zurkowskac G, Diehl H (1996) Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution. Chem Phys 210:485–499CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Advanced Sensor Technology and Department of Chemical and Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Center for Advanced Sensor Technology (CAST), Technology Research Center (TRC)University of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations